
Quickly Starting Media Streams Using QUIC
Sevket Arisu

Ozyegin University and Turkcell
Istanbul, Turkey

sevket.arisu@ozu.edu.tr

Ali C. Begen
Ozyegin University
Istanbul, Turkey

ali.begen@ozyegin.edu.tr

ABSTRACT
Originally proposed by Google, QUIC is a low-latency transport
protocol currently being developed and specified in the IETF.
QUIC’s low-latency, improved congestion control, multiplexing
features are promising and may help improve viewer experience
in HTTP adaptive streaming applications. To investigate what
issues due to running HTTP over TCP can be alleviated by using
HTTP over QUIC, we measured QUIC’s streaming performance on
wireless and cellular networks. Specifically, we examined QUIC’s
performance during network interface changes due to viewer’s
mobility and under unstable network conditions. Results show
that QUIC starts media streams more quickly, providing a better
streaming and seeking experience, in particular, when there is more
congestion in the network, and outperforms TCP when the viewer
is mobile and switches between the networks.

CCS CONCEPTS
• Information systems→ Information systems applications;
• Multimedia information systems→ Multimedia streaming;

KEYWORDS
HTTP adaptive streaming, DASH, QUIC, QoE.
ACM Reference Format:
Sevket Arisu and Ali C. Begen. 2018. Quickly Starting Media Streams
Using QUIC. In Packet Video’18: 23rd Packet Video Workshop, June 12–
15, 2018, Amsterdam, Netherlands. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3210424.3210426

1 INTRODUCTION
Google’s experimental QUIC protocol has been developed rapidly
and is now deployed and working behind many Google’s services
at a large scale. It currently accounts for over 30% of Google’s total
egress traffic [21]. On the client side, QUIC is widely deployed
through the Chrome browser (both desktop and mobile), and
already comprises 7% of all Internet traffic [25]. QUIC provides
new features such as reduced connection establishment latency,
improved congestion control, multiplexing streams and encryption
at application transport level. Some of these features may be
changed or removed, or new features may be added over time

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Packet Video’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5773-9/18/06. . . $15.00
https://doi.org/10.1145/3210424.3210426

as all the aspects regarding the QUIC protocol are currently being
specified in the IETF by a large number of experts across a number
of companies and researchers working in the field.

A common misconception is that HTTP must use TCP. While
that has been primarily the case, the HTTP specifications (RFCs
7230 and 7540) do not mandate the use of TCP, rather they state
that HTTP requires a reliable transport protocol. To that effect,
HTTP adaptive streaming (HAS) has dominantly used TCP for
many years. A major drawback in TCP is the head-of-line blocking.
If a packet is lost, TCP holds on to the subsequent packets that may
have already been received in the receive buffer, and it does not
deliver them to the application until the missing packet is recovered
using retransmission in order to guarantee in-order delivery.

Regarding HAS, head-of-line blocking and slow retransmissions
could occasionally lead to late delivery of the media segments
and this may degrade the viewer’s quality of experience (QoE)
especially if the streaming client runs out of data in its playback
buffer. Thanks to its design, QUIC can help with this issue. QUIC
usesmultiplexed streams on one UDP connection to handle multiple
requests in parallel. Each stream in QUIC has reliable delivery, but
they are independent of each other. If a packet gets lost in a stream,
the other streams are not affected. HTTP/2 (RFC 7540) also has
multiplexing features, however, HTTP/2 may still suffer from head-
of-line blocking if it is used over TCP. QUIC’s another feature
that can help improve QoE is the reduced handshake latency. TCP
requires 1.5 round-trip times (RTT), whereas QUIC requires half an
RTT before any data request is received by the server. Potentially,
this may reduce the initial startup or seeking latency. Lastly, QUIC
provides improved congestion control and loss recovery features,
which may help achieve a higher throughput in general.

Previous research has confirmed that viewers are very sensitive
to buffering as one percent increase in buffering can cause reduction
in viewing time more than three minutes [17]. According to another
research [11], engagement linearly decreases with increasing rate
of buffering up to a certain threshold. Only 30% of the content is
watched when there are more than 0.3 buffering events per minute.
If the rate of buffering increases further, viewers get annoyed
and they quit early without finishing to play the entire content.
Buffering events occur not only when there is a loss or delay in
the network during playback, but also when the viewer seeks to
a point in time and the corresponding media segments have not
been buffered yet. Furthermore, buffering events are more likely
to occur when the network interface changes since in this case the
TCP connection has to be re-established due to the change of the
IP address (e.g., switching from WiFi to LTE or 3G network).

The goal of this paper is to answer the following two questions:
First, how and under what circumstances can QUIC start media
streams more quickly, helping to reduce the initial startup and
seeking latency? Second, how can we benefit from QUIC to get

1

better QoE when the viewer is mobile and switches between the
networks? We evaluate the HAS performance over QUIC vs. over
TCP to answer these questions.

This paper continues as follows: In Section 2, we present the
previous works that studied streaming over QUIC. Section 3
describes our approach and setup that is designed to compare the
performance of streaming clients running QUIC and TCP under
different frame-seek scenarios and varying network conditions. In
Section 4, we analyze the observed QoE measurements. Finally,
Section 5 includes our conclusions, and a discussion of potential
benefits of QUIC transport for HAS and future work.

2 RELATEDWORK
Timmerer et al. found that using QUIC instead of TCP did not
impact the overall streaming performance at the client in terms of
increased or decreased media throughput [27]. On the other hand,
Szabo et al. showed QUIC’s gain in initial buffering time to be in
the range of 6-49% depending on the video properties and network
environment [26]. Li et al. studied an MMT-based heterogeneous
multimedia system using QUIC. Their finding is that QUIC is a
better choice for media transport in comparison with HTTP when
using an MMT system [22]. Bhat et al. evaluated the performance
of the state-of-the-art HAS algorithms by comparing TCP versus
QUIC at the transport layer. The authors found that QUIC did
not benefit the existing algorithms because these algorithms were
designed with TCP in mind [13]. Zinner et al. also looked into
the same problem and found for the playback start, QUIC with
0-RTT connection establishment clearly performed better than the
other protocols [29]. Google reported that QUIC reduced rebuffer
rates of YouTube playbacks by 18% for desktop users and 15.3%
for mobile users [21]. In their study, Kakhki et al. found that QUIC
provided better streaming QoE, but only for high-quality video [20].
Ayad et al. studied the performance of commercial and open-source
players and found that the QUIC protocol was quite aggressive
when competing with other TCP flows and not as responsive to
congestion as other TCP flows [10].

There are also studies that investigated QUIC for not necessarily
streaming over HTTP but ordinary Web transport. Carlucci et
al. found that QUIC outperformed HTTP over TCP in terms of
page load times when there were no random losses and QUIC
outperformed SPDY (the pre-standard version of HTTP/2) in the
case of a lossy connection [14]. Megyesi et al. compared QUIC’sWeb
page load performance in HTTP/1.1 and SPDY, and concluded that
none of these protocols is clearly better than the other two and the
actual network conditions determined which protocol performed
better [23]. Cook et al. clearly saw that QUIC outperformed
HTTP/2 over TCP/TLS in unstable networks such aswirelessmobile
networks [16]. In a recent work, Qian et al. studied mobile Web
content delivery and found that multiple QUIC connections could
overcome the limitations of different congestion control algorithms
when downloading short-lived content [24].

Some research found that QUIC was less competitive than TCP
in a network with little loss, large buffer or large propagation
delay [28] or QUIC did not provide a significant boost to adaptive
streaming performance [13, 27]. We suspect that the contradictory
nature of these results (compared to ours) is primarily due to the fact
that these studies used either an older version of the QUIC server

provided by Google or an open-source implementation, which was
not provided by Google. Since the QUIC code evolves rapidly, an
older or non-original code base is not guaranteed to deliver the true
protocol performance. Google states that the public versions of the
QUIC server and client are not “performant at scale” [7], however,
our testing showed that the performances of the toy server and the
toy client were good enough for testing with one client.

To the best of our knowledge, we are the first to investigate
QUIC with respect to viewer’s frame-seek requests and frequent
wireless network changes over the public Internet. Our differences
compared to prior work are listed below and summarized in Table 1:

• We used the latest official public version of the QUIC server.
• We tested frame-seek scenarios to understand how much
quicker QUIC was compared to TCP.

• We tested scenarios involving connection/interface changes.
• We experimented with live video content.
• We primarily focused on the wireless environments.

3 APPROACH AND ENVIRONMENT SETUP
In this section, we describe our test setup, player modifications and
approach to measure the performance of HAS over QUIC and TCP
for different frame-seek scenarios and network interface changes. In
this study, we present results only for forward frame-seek scenarios,
however, the results and conclusions are equally applicable for
backward frame-seek scenarios as well.

We ran the experiments on the public Internet (uncontrolled
environment). We did not use any test bed or any traffic shaping
tool to modify the network speed, loss or delay. We used the official
QUIC server (v39) provided by Google [7] for QUIC and Apache’s
HTTP server [2] for TCP. The servers were set up on an Amazon
EC2 instance located in Frankfurt (Germany), while the streaming
clients were located in Istanbul (Turkey). The streaming clients
were connected via WiFi to residential broadband access network
or via smartphone tethering to a commercial LTE or 3G network.

Figure 1 and Table 2 show the network characteristics observed
during the tests. The lower, middle and upper bars in the box
plots in Figure 1 represent the 25th , 50th and 75th percentiles
of the measured RTTs, respectively, for all three types of wireless
networks. The average RTTs (shown as black squares) forWiFi, LTE
and 3G are 69 ms, 128 ms and 234 ms, respectively. Note that the
RTTs that were higher than 400 ms for 3G are omitted in Figure 1.

We made a set of modifications in the Python-based player [19]
to ensure a fair comparison of QUIC and TCP. First, because of the
lack of a Python library implementation for QUIC, we integrated
the QUIC client that was provided by Google into the player as a
sub-process. The media segments were downloaded by this sub-
process using a single QUIC connection over UDP. Second, the
original player [19] used Python’s urllib [1] to make HTTP requests,
and the player was opening a new connection for each segment.
However, QUIC made transfers over a single UDP connection by
default. To make the comparison fair, we integrated a new TCP
client and used this client instead of Python’s urllib to download the
segments over a single TCP connection. The TCP client is built with
libcurl [6] and works with HTTP keep-alive feature on. Figure 2
shows how the HAS player works with QUIC and TCP.

2

Table 1: Comparison between our and prior work (sorted by publication date).

Tested QUIC
Version

Used Official
Google Server?

Wireless
Networks1

Tested Different
Algorithms?

Evaluated
Frame Seeking?

Evaluated Conn.
Switches?

Tested Live
Video?

Timmerer [27] v19 ✓ ✗ ✗ ✗ ✗ ✗

Szabo [26] Latest 2 ✗ Only WiFi ✗ ✗ ✗ ✗

Li [22] Latest 3 ✓ ✗ ✗ ✗ ✗ ✗

Bhat [13] Latest 2 ✗ Only WiFi ✓ ✗ ✗ ✗

Zinner [29] Latest 3 ✓ ✗ ✗ ✗ ✗ ✗

Kakhki [20] v37 ✓ All ✗ ✗ ✗ ✗

Ayad [10] Latest 3 ✓ ✗ ✓ ✗ ✗ ✗

Our work v39 3 ✓ All ✓ ✓ ✓ ✓

1 WiFi, 4G/LTE and 3G.
2 Based on the third-party implementation version at the time of research.
3 Latest at the time of research.

0

50

100

150

200

250

300

350

400

WiFi LTE 3G

R
TT

 (
m

s)

Connection Type

Figure 1: Measured RTTs during the tests (milliseconds).

Table 2: Measured network parameters (averages).

Type Advertised
Bandwidth

Measured Tput btw.
Server & Client

Average
RTT

Loss
Rate

WiFi 50 Mbps 3.9 Mbps 69 ms 0%
LTE 300 Mbps 2.4 Mbps 128 ms ~0%
3G 21.6 Mbps 1.9 Mbps 234 ms ~0%

Both QUIC and TCP clients were coded in C++, and we disabled
the QUIC server’s in-memory cache. The modified player code, the
QUIC and TCP clients are available for public access on GitHub
for the research community [5]. In the future, we plan to integrate
HTTP/2 support into our code. For this study, we used the following
bitrate adaptation algorithms to run the experiments:
• BASIC (Throughput based): This adaptation algorithm uses
the average of the segment download rates. It starts by
requesting the segment with the lowest bitrate and then it selects
the bitrate for the next segment based on the measured average
throughput [19].

• SARA - Segment Aware (Buffer based): SARA considers the
segment size variation in addition to the estimated bandwidth
and the current buffer occupancy to accurately predict the
time required to download the next segment. SARA estimates
throughput with weighted harmonic mean [19].

• BBA-2 (Buffer based): BBA-2 algorithm uses a set of functions
that maps the buffer occupancy to a bitrate. It tries to reduce the
rebuffering and increase the average playback bitrate. It directly
chooses the next bitrate based on the buffer occupancy and only
uses bandwidth estimation when necessary. BBA-2 algorithm
was part of a large-scale Netflix experiment [18].

Note that this study primarily focuses on the transport options for
HAS, not the features of the particular bitrate adaptation algorithms.

3.1 Frame-Seek Scenario
To evaluate the performance of QUIC and TCP when the viewer
wanted to perform seeking, we implemented the frame-seek
feature in the player. Upon seeking to a point in time where the

Internet

Network Interface

HAS Player

TCP

TCP
Client

UDP

UDP
Client

Single TCP or UDP
Connection

Single TCP or UDP
Connection

HTTP Server

Network Interface

Figure 2: The HAS player can use QUIC or TCP to download
the media segments.

3

corresponding media segments have not been buffered yet, the
playback buffer will be empty and the player needs to fill it up
quickly for a smooth seeking experience. The frame-seek scenario
is tabulated in Table 3, which shows that there are four seeking
events at various seek-at seconds. When the media time equals a
seek-at time, the player jumps to the seek-to time. In conventional
adaptive streaming, the bitrate adaptation algorithm may decide
to fetch the segments at the lowest encoding bitrate to reduce the
seeking time at the expense of reduced presentation quality. In our
tests, we programmed the player to keep the bitrate the same with
the one of the last played segment before the seeking, and measured
the time difference from the request to the playback of the seek-to
segment. While there is a clear trade-off between the seeking time
and seeking quality, our goal was to see the impact of the transport
layer on the seeking time, and thus, we kept the requested bitrate
unchanged during seeking. We used an on-demand content in the
frame-seek scenario tests.
Table 3: Frame-seek scenario for the 600-second content.
Viewer Action Seek at Seek to Play Duration
Start at 0 s - - 40 s
Seek #1 40 s 100 s 50 s
Seek #2 150 s 200 s 80 s
Seek #3 280 s 350 s 70 s
Seek #4 420 s 500 s 100 s

Finish at 600 s - - -
Total Viewed 340 s

3.2 Connection-Switch Scenario
To evaluate QUIC’s performance against varying network con-
ditions and IP connections/disconnections, we placed a network
interface switcher script at the client machine. This script changed
the client’s active network connection from WiFi to LTE or 3G
or vice versa within fixed intervals. When a connection loss was
detected by the player, it tried to restore the connection by using a
new interface. During this process, the playback continued as long
as there were media segment(s) in the playback buffer. Naturally,
the connection re-establishment time may result in a stall, increase
rebuffering and degrade the viewer QoE. We measured the aver-
age playback bitrate and rebuffer rate when there were various IP
change events that were caused by network interface changes.

Today, thanks to the networking stack developments, most
connections can be re-established in several seconds. If the player is
streaming an on-demand content with a sufficiently large playback
buffer size, the player can absorb most connection switches without
resulting in a stall or significant quality degradations. However, if
the connection restores in a longer time, the player may have to
fetch segments encoded at lower bitrates. If this does not suffice, a
stall and rebuffering is inevitable.

To better understand the impact of using QUIC vs. TCP during
connection switches, we used a live content with a smaller playback
buffer size. The setup for these tests is shown in Figure 3, and the
connection-switch scenario is tabulated in Table 4.

4 RESULTS
In our tests, we used 600-second long video dataset from [8] with 20
bitrates ranging from 44 Kbps to 3.9 Mbps. We ran the tests for three

Internet

Network Interface

Server

TCP

Apache
HTTP
Server

Google
QUIC
Server

UDP

Client

Network
Interface 1

Player
(QUIC Mode)

Player
(TCP Mode)

Operating System

Network
Interface 2

LTE or 3G

W
iF

i

Base Station

WiFi AP
Smart
Phone

Switch Scheduler

Figure 3: Internet setup for the connection-switch tests.

Table 4: Connection-switch scenario for the 600-second
content.

From Second To Second Connection Type
0 60 WiFi
60 180 LTE or 3G
180 300 WiFi
300 420 LTE or 3G
420 480 WiFi
480 540 LTE or 3G
540 600 WiFi

different algorithms on three types of wireless networks in separate
time slots. However, we started the players for each protocol (QUIC
and TCP) approximately at the same time to ensure both protocols
faced the same conditions in the uncontrolled environment. We
also repeated each test for 10 times to avoid significant anomalies
and in this section, we present the average results. For the on-
demand content, the segment duration and playback buffer size
were four and 20 seconds, respectively. For the live content, the
segment duration and playback buffer size were set to two and
eight seconds, respectively.

4.1 Metrics
We measured following metrics in our tests:

• Average Playback Bitrate: We measured the average bitrates
of the downloaded segments during the tests. Generally
speaking, higher encoding bitrate implies better QoE. We
note that the average playback bitrate must be considered
together with other metrics such as the number of bitrate
changes to make a more accurate assessment of the QoE [12].

4

• Average Wait Time after Seeking: This is the time from the
frame-seek request to the playback of the requested media. A
rule of thumb is to keep this time under two seconds [9, 15].

• Rebuffer Rate: The rebuffer rate is calculated as follows:

Rebuffer Rate =
Rebuffer Time

Rebuffer Time + Media Play Time (1)

where the “Rebuffer Time” is the time that the media pauses
during the playback to rebuffer and “Media Play Time” is
the length of the media.

In our tests, the players using QUIC always achieved a higher
average playback bitrate by selecting segments encoded at bitrates
higher than, or at least as high as, TCP while not increasing, and
actually reducing, the average wait time or rebuffer rate. The results
are presented in Tables 5, 6 and 7.

4.2 Results for the Frame-Seek Scenario
The middle columns in Tables 5, 6 and 7 show the frame-seek
results for the BASIC, SARA and BBA-2 algorithms, respectively.
In all cases, QUIC achieved a shorter average wait time after
seeking (up to 50% reduction compared to the wait times achieved
by TCP), providing a quicker start of the media streams. The
rebuffer rates were also substantially lower for QUIC. These results
may seem to conflict with some of the results reported by earlier
studies [13]. We suspect this is primarily due to the fact that [13]
used an open-source server implementation with experimental
QUIC support [3, 4].

The HAS player may have to flush the entire playback buffer
upon a frame seek. The SARA and BBA-2 algorithms are sensitive
to empty buffer, while the BASIC algorithm does not consider
the current buffer level to determine the next bitrate. During the
tests, the available bandwidth on WiFi was high enough to stream
near the highest encoding bitrate. For this reason, the BASIC
algorithm gives a better average playback bitrate than the other two
algorithms. The buffer-based algorithms may be modified for the
frame-seek feature to better compete with the throughput-based
algorithms.

We observed that the average wait time after seeking is almost
two seconds or longer in all cases when streaming over TCP for
all algorithms on all types of wireless networks. QUIC reduced
the average wait time to less than one and a half second, which
is an important result, considering that keeping the average wait
time after seeking less than two seconds is essential for viewer
engagement and loyalty [9, 15]. We also observed that QUIC
reduced the rebuffer rates. When streaming over TCP, the rebuffer
rates were higher than 3% for the WiFi and LTE networks, and
higher than 5% for the 3G network. When streaming over QUIC, the
rebuffer rates dropped to 1% and 2% for the WiFi and LTE networks,
respectively. QUIC reduced the rebuffer rate more dramatically
from 6% to 2% for the 3G network.

In our measurements, the 3G network has 82% higher average
RTT than the LTE network as shown in Table 2. According to
Google, QUIC’s benefits are bigger whenever congestion, packet
loss and delays are higher in the network [21]. Our findings confirm
this with the results for the 3G network. However, our findings
conflict with [20] where the authors found that 3G network packet

Table 5: Frame-seek results with BASIC algorithm.

Avg. Playback
Bitrate (Mbps)

Avg. Wait Time
after Seeking (s) Rebuffer Rate

WiFi LTE 3G WiFi LTE 3G WiFi LTE 3G
QUIC 3.38 3.38 3.37 1.35 1.40 1.42 1% 1% 2%
TCP 3.29 3.35 3.08 1.90 1.93 2.40 3% 3% 5%

Table 6: Frame-seek results with SARA algorithm.

Avg. Playback
Bitrate (Mbps)

Avg. Wait Time
after Seeking (s) Rebuffer Rate

WiFi LTE 3G WiFi LTE 3G WiFi LTE 3G
QUIC 2.63 3.01 2.95 1.20 1.16 1.36 1% 1% 2%
TCP 2.57 2.92 2.87 2.20 2.32 2.42 4% 4% 6%

Table 7: Frame-seek results with BBA-2 algorithm.

Avg. Playback
Bitrate (Mbps)

Avg. Wait Time
after Seeking (s) Rebuffer Rate

WiFi LTE 3G WiFi LTE 3G WiFi LTE 3G
QUIC 2.65 2.75 2.65 1.28 1.30 1.48 1% 2% 2%
TCP 2.53 2.69 2.62 2.17 2.22 2.33 4% 4% 6%

reordering rates were higher compared to LTE and this worked
to QUIC’s disadvantage. However, the authors also pointed out a
potential problem with the two sample sets they used in their study.

4.3 Results for the Connection-Switch Scenario
Inspired by the so-called “parking lot problem”, we looked into using
QUIC under unstable network conditions. The use case is that the
viewer has a strong WiFi signal and has been streaming video at
home (or in the office), and then the viewer leaves the premises,
walks to his car, and the WiFi signal fades away. After a certain
amount of time, the mobile device disconnects any connection
going through the WiFi and creates a new one(s) through the LTE
or 3G mobile network. We used the setup shown in Figure 3 for
simulating this scenario. We placed a script on the client machine
that changed the active Internet connection fromWiFi to cellular or
vice versa periodically at fixed intervals1. When the player detected
a connection loss within a predefined timeout (five seconds in our
tests), it killed the active connection and re-established a new one
to the HAS server over the new interface. Once the long-lived
connection that had a large congestion window is lost, the player
will endure a low throughput till the handshake and any slow-start
like phase are completed.

In the WiFi↔ LTE switch scenario, QUIC reduced the rebuffer
rates by 1% and provided higher average playback bitrates for all
algorithms, as detailed in Table 8. Our observations confirm that
QUIC increases its window more aggressively than TCP and QUIC
is able to achieve a larger congestion windowwhen competing with
1Some mobile OSes use WiFi simultaneously with LTE to cope with poor WiFi signals.

5

Table 8: WiFi-LTE switch results.

Algorithm Protocol Avg. Playback
Bitrate Rebuffer Rate

BASIC QUIC 3.19 Mbps 2%
TCP 2.98 Mbps 3%

SARA QUIC 2.37 Mbps 3%
TCP 2.22 Mbps 4%

BBA-2 QUIC 1.24 Mbps 4%
TCP 1.20 Mbps 5%

Table 9: WiFi-3G switch results.

Algorithm Protocol Avg. Playback
Bitrate Rebuffer Rate

BASIC QUIC 2.95 Mbps 6%
TCP 2.91 Mbps 13%

SARA QUIC 2.12 Mbps 1%
TCP 1.95 Mbps 2%

BBA-2 QUIC 1.16 Mbps 4%
TCP 1.13 Mbps 5%

TCP [20]. Thus, QUIC provides faster downloads for the segments,
starts the media streams more quickly and reduces the rebuffer rate
soon after the connection establishment.

In theWiFi↔3G switch scenario, the results are more interesting.
Since the BASIC algorithm did not consider buffer occupancy
in bitrate adaptation, it had the highest rebuffer rate. For this
algorithm, QUIC reduced the rebuffer rate from 13% to 6%. Buffer-
based algorithms already did not have high rebuffer rates since they
selected lower bitrates for future segments. For these algorithms,
the benefit of QUIC was 1% reduction in the rebuffer rate (not as
substantial as for the BASIC algorithm). For any of the algorithms,
QUIC still delivered a higher average playback bitrate. The results
are shown in Table 9.

5 CONCLUSIONS
In this paper, we evaluated the performance of HAS over QUIC on
uncontrolled wireless network environments in the public Internet.
We focused on standard QoE metrics as well as the average wait
time after frame seeking. QUIC empirically provided better QoE
especially in terms of shorter wait times and lower rebuffer rates,
and while doing so, QUIC did not cause a decrease in the average
playback bitrate.

We also investigated QUIC’s performance when frequent IP
changes existed due to viewer mobility, especially for live video.
Switching to a new network interface changes the client IP address.
TCP connections are identified by IP and port pairs whereas QUIC
connections are identified by unique Connection Identifier (CID).
Using CID may help QUIC make fast switching upon network/IP
changes. Even when the CID was not used in our tests, we saw that
QUIC outperformed TCP.

Since QUIC’s benefits are greater in networks that have larger
delay and loss, QUIC can help more to improve the overall viewer
QoE in regions where early generation 3G networks still exist.
However, we should note that QUIC is currently being specified in

the IETF and some architectural changes are planned. Should there
be significant changes in the protocol, some of the tests will need
to be repeated.

REFERENCES
[1] Python urllib. http://docs.python.org/2/library/urllib.html, accessed Dec. 2017.
[2] Apache HTTP server. http://httpd.apache.org, accessed Jan. 2018.
[3] Caddy QUIC support. http://github.com/mholt/caddy/wiki/QUIC, accessed Jan.

2018.
[4] quic-go issues. http://github.com/lucas-clemente/quic-go/issues/302, accessed

Jan. 2018.
[5] GitHub quic-streaming. http://github.com/sevketarisu/quic-streaming, accessed

March. 2018.
[6] libcurl. http://curl.haxx.se/libcurl, accessed Oct. 2017.
[7] Playing with QUIC. http://www.chromium.org/quic/playing-with-quic, accessed

Sep. 2017.
[8] DASH dataset. http://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014,

accessed Sept. 2017.
[9] Akamai. Maximizing audience engagement: How online video performance

impacts viewer behavior. 2015.
[10] I. Ayad, Y. Im, E. Keller, and S. Ha. A practical evaluation of rate adaptation

algorithms in HTTP-based adaptive streaming. Computer Networks, 133:90 – 103,
2018.

[11] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang.
Developing a predictive model of quality of experience for Internet video.
SIGCOMM Comput. Commun. Rev., 43(4):339–350, 2013.

[12] A. Bentaleb, A. C. Begen, R. Zimmermann, and S. Harous. Sdnhas: An SDN-
enabled architecture to optimize QoE in HTTP adaptive streaming. IEEE
Transactions on Multimedia, 19(10):2136–2151, 2017.

[13] D. Bhat, A. Rizk, and M. Zink. Not so QUIC: A performance study of DASH over
QUIC. In Proceedings of the 27th Workshop on Network and Operating Systems
Support for Digital Audio and Video, 2017.

[14] G. Carlucci, L. De Cicco, and S. Mascolo. HTTP over UDP: An experimental
investigation of QUIC. In Proceedings of the 30th Annual ACM Symposium on
Applied Computing, 2015.

[15] Conviva. OTT streaming market year in review. 2017.
[16] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui. QUIC: Better for what and for

whom? In 2017 IEEE International Conference on Communications (ICC), 2017.
[17] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and

H. Zhang. Understanding the impact of video quality on user engagement.
SIGCOMM Comput. Commun. Rev., 41(4):362–373, 2011.

[18] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A buffer-based
approach to rate adaptation: Evidence from a large video streaming service. In
Proceedings of the 2014 ACM Conference on SIGCOMM, 2014.

[19] P. Juluri, V. Tamarapalli, and D. Medhi. SARA: Segment aware rate adaptation
algorithm for dynamic adaptive streaming over HTTP. In 2015 IEEE International
Conference on Communication Workshop (ICCW), 2015.

[20] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove. Taking a long
look at QUIC: An approach for rigorous evaluation of rapidly evolving transport
protocols. In Proceedings of the 2017 Internet Measurement Conference, 2017.

[21] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,
F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P.Westin,
R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, and Z. Shi. The QUIC
transport protocol: Design and internet-scale deployment. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication, 2017.

[22] B. Li, C. Wang, Y. Xu, and Z. Ma. An MMT based heterogeneous multimedia
system using QUIC. In 2016 2nd International Conference on Cloud Computing
and Internet of Things (CCIOT), 2016.

[23] P. Megyesi, Z. Kramer, and S. Molnar. How quick is QUIC? In 2016 IEEE
International Conference on Communications (ICC), 2016.

[24] P. Qian, N. Wang, and R. Tafazolli. Achieving robust mobile Web content delivery
performance based on multiple coordinated QUIC connections. IEEE Access,
6:11313–11328, 2018.

[25] Sandvine. Global Internet Phenomena Report. 2016.
[26] G. Szabo, S. Racz, D. Bezzera, I. Nogueira, and D. Sadok. Media QoE enhancement

with QUIC. In 2016 IEEE Conference on Computer Communications (INFOCOM)
Workshops, 2016.

[27] C. Timmerer and A. Bertoni. Advanced transport options for the dynamic
adaptive streaming over HTTP. CoRR, abs/1606.00264, 2016.

[28] Y. Yu, M. Xu, and Y. Yang. When QUICmeets TCP: An experimental study. In 2017
IEEE 36th International Performance Computing and Communications Conference
(IPCCC), 2017.

[29] T. Zinner, S. Geissler, F. Helmschrott, and V. Burger. Comparison of the initial
delay for video playout start for different HTTP-based transport protocols. In
2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
2017.

6

