Uras, Umut ZeynepArık, MehmetTamdoğan, Enes2017-10-122017-10-122017-06-121043-7398http://hdl.handle.net/10679/5657https://doi.org/10.1115/1.4036403Due to copyright restrictions, the access to the full text of this article is only available via subscription.In recent years, light emitting diodes (LEDs) have become an attractive technology for general and automotive illumination systems replacing old-fashioned incandescent and halogen systems. LEDs are preferable for automobile lighting applications due to its numerous advantages such as low power consumption and precise optical control. Although these solid state lighting (SSL) products offer unique advantages, thermal management is one of the main issues due to severe ambient conditions and compact volume. Conventionally, tightly packaged double-sided FR4-based printed circuit boards (PCBs) are utilized for both driver electronic components and LEDs. In fact, this approach will be a leading trend for advanced internet of things applications embedded LED systems in the near future. Therefore, automotive lighting systems are already facing with tight-packaging issues. To evaluate thermal issues, a hybrid study of experimental and computational models is developed to determine the local temperature distribution on both sides of a three-purpose automotive light engine for three different PCB approaches having different materials but the same geometry. Both results showed that FR4 PCB has a temperature gradient (TMaxBoard to TAmbient) of over 63 °C. Moreover, a number of local hotspots occurred over FR4 PCB due to low thermal conductivity. Later, a metal core PCB is investigated to abate local hot spots. A further study has been performed with an advanced heat spreader board based on vapor chamber technology. Results showed that a thermal enhancement of 7.4% and 25.8% over Al metal core and FR4-based boards with the advanced vapor chamber substrate is observed. In addition to superior thermal performance, a significant amount of lumen extraction in excess of 15% is measured, and a higher reliability rate is expected.engrestrictedAccessThermal performance of a light emitting diode light engine for a multipurpose automotive exterior lighting system with competing board technologiesarticle139200040662600000910.1115/1.40364032-s2.0-85020731092