Ünal, RamazanBehrens, S.Carloni, R.Hekman, E.Stramigioli, S.Koopman, B.2019-02-052019-02-052018-121534-4320http://hdl.handle.net/10679/6142https://doi.org/10.1109/TNSRE.2018.2880345In this paper, we present the working principle and conceptual design toward the realization of a fully-passive transfemoral prosthesis that mimics the energetics of the natural human gait. The fundamental property of the conceptual design consists of realizing an energetic coupling between the knee and ankle joints of the mechanism. Simulation results show that the power flow of the working principle is comparable with that in human gait and a considerable amount of energy is delivered to the ankle joint for the push-off generation. An initial prototype in half scale is realized to validate the working principle. The construction of the prototype is explained together with the test setup that has been built for the evaluation. Finally, experimental results of the prosthesis prototype during walking on a treadmill show the validity of the working principle.engrestrictedAccessConceptual design of a fully passive transfemoral prosthesis to facilitate energy-efficient gaitarticle26122360236600045244010001510.1109/TNSRE.2018.2880345ProstheticsUser centered designBiomechanicsKinematicsDynamicsMotion analysis2-s2.0-85056314777