Publication:
Deterministic neural illumination mapping for efficient auto-white balance correction

Placeholder

Research Projects

Organizational Unit

Journal Title

Journal ISSN

Volume Title

Type

conferenceObject

Sub Type

Conference paper

Access

restrictedAccess

Publication Status

Published

Journal Issue

Abstract

Auto-white balance (AWB) correction is a critical operation in image signal processors for accurate and consistent color correction across various illumination scenarios. This paper presents a novel and efficient AWB correction method that achieves at least 35 times faster processing with equivalent or superior performance on high-resolution images for the current state-of-the-art methods. Inspired by deterministic color style transfer, our approach introduces deterministic illumination color mapping, leveraging learnable projection matrices for both canonical illumination form and AWB-corrected output. It involves feeding high-resolution images and corresponding latent representations into a mapping module to derive a canonical form, followed by another mapping module that maps the pixel values to those for the corrected version. This strategy is designed as resolution-agnostic and also enables seamless integration of any pre-trained AWB network as the backbone. Experimental results confirm the effectiveness of our approach, revealing significant performance improvements and reduced time complexity compared to state-of-the-art methods. Our method provides an efficient deep learning-based AWB correction solution, promising real-time, high-quality color correction for digital imaging applications.

Date

2023

Publisher

IEEE

Description

Keywords

Citation


0

Views

0

Downloads