Publication:
BoB: Bandwidth prediction for real-time communications using heuristic and reinforcement learning

Loading...
Thumbnail Image

Institution Authors

Research Projects

Organizational Unit

Journal Title

Journal ISSN

Volume Title

Type

article

Sub Type

Access

Attribution 4.0 International
openAccess

Publication Status

Published

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution 4.0 International

Journal Issue

Abstract

Bandwidth prediction is critical in any Real-time Communication (RTC) service or application. This component decides how much media data can be sent in real time. Subsequently, the video and audio encoder dynamically adapts the bitrate to achieve the best quality without congesting the network and causing packets to be lost or delayed. To date, several RTC services have deployed the heuristic-based Google Congestion Control (GCC), which performs well under certain circumstances and falls short in some others. In this paper, we leverage the advancements in reinforcement learning and propose BoB (Bang-on-Bandwidth) — a hybrid bandwidth predictor for RTC. At the beginning of the RTC session, BoB uses a heuristic-based approach. It then switches to a learning-based approach. BoB predicts the available bandwidth accurately and improves bandwidth utilization under diverse network conditions compared to the two winning solutions of the ACM MMSys'21 grand challenge on bandwidth estimation in RTC. An open-source implementation of BoB is publicly available for further testing and research.

Date

2023

Publisher

IEEE

Description

Keywords

Citation

Collections


2

Views

6

Downloads