Publication:
High-level representations through unconstrained sensorimotor learning

Placeholder

Institution Authors

Research Projects

Journal Title

Journal ISSN

Volume Title

Type

conferenceObject

Sub Type

Conference paper

Access

restrictedAccess

Publication Status

Published

Journal Issue

Abstract

How the sensorimotor experience of an agent can be organized into abstract symbol-like structures to enable effective planning and control is an open question. In the literature, there are many studies that start by assuming the existence of some symbols and 'ground' those onto continuous sensorimotor signals. There are also works that aim to facilitate the emergence of symbol-like representations by using specially designed machine learning architectures. In this paper, we investigate whether a deep reinforcement learning system that learns a dynamic task would facilitate the formation of high-level neural representations that might be considered as precursors of symbolic representation, which could be exploited by higher level neural circuits for better control and planning. The results indicate that without even explicit design to promote such representations, neural responses emerge that may serve as the basis of abstract symbol-like representations.

Date

2020-10-26

Publisher

IEEE

Description

Keywords

Citation

Collections


0

Views

0

Downloads