Publication: On the volume of the shrinking branching Brownian sausage
Loading...
Institution Authors
Authors
Journal Title
Journal ISSN
Volume Title
Type
article
Sub Type
Access
openAccess
Publication Status
Published
Abstract
The branching Brownian sausage in R-d was defined in [4] similarly to the classical Wiener sausage, as the random subset of R-d scooped out by moving balls of fixed radius with centers following the trajectories of the particles of a branching Brownian motion (BBM). We consider a d-dimensional dyadic BBM, and study the large-time asymptotic behavior of the volume of the associated branching Brownian sausage (BBM-sausage) with radius exponentially shrinking in time. Using a previous result on the density of the support of BBM, and some well-known results on the classical Wiener sausage and Brownian hitting probabilities, we obtain almost sure limit theorems as time tends to infinity on the volume of the shrinking BBM-sausage in all dimensions.
Date
2020
Publisher
The Institute of Mathematical Statistics and the Bernoulli Society