Publication:
Effect of polymer coating on vapor condensation heat transfer

Placeholder

Institution Authors

Research Projects

Journal Title

Journal ISSN

Volume Title

Type

article

Sub Type

Access

restrictedAccess

Publication Status

Published

Journal Issue

Abstract

Condensation heat transfer coefficients (HTCs) are rather low compared to thin film evaporation. Therefore, it can be a limiting factor for designing heat transfer equipment. In this work, heat transfer characteristics of water vapor condensation phenomena were experimentally studied on a vertically aligned smooth copper substrate for a range of pressures and temperatures for two different liquid wettability conditions. The heat transfer performance is dominated by the phase change process at the solid-vapor interface along with the liquid formation mechanism. Compared to heat transfer results measured at an untreated copper surface, heat transport is augmented with a thin layer of perfluoro-silane coating over the same substrate. In this work, the effect of saturation pressure on the condensation process at both surfaces has been investigated by analyzing heat transfer coefficients. The results obtained experimentally show an increase in contact angle (CA) with the surface coating. A heat transfer augmentation of about 26% over uncoated surfaces was obtained and surfaces did not show any degradation after 40h of operation. Finally, current results are compared with heat transfer values reported in open literature.

Date

2020-04-01

Publisher

ASME

Description

Keywords

Citation


0

Views

0

Downloads