Publication: Evidence for collective multiparticle correlations in p-Pb collisions
Institution Authors
Journal Title
Journal ISSN
Volume Title
Type
article
Sub Type
Access
restrictedAccess
Publication Status
published
Abstract
The second-order azimuthal anisotropy Fourier harmonics, v2, are obtained in p−Pb and PbPb collisions over a wide pseudorapidity (η) range based on correlations among six or more charged particles. The p-Pb data, corresponding to an integrated luminosity of 35 nb−1, were collected during the 2013 LHC p-Pb run at a nucleon-nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. A sample of semiperipheral PbPb collision data at sNN−−−√=2.76 TeV, corresponding to an integrated luminosity of 2.5 μb−1 and covering a similar range of particle multiplicities as the p−Pb data, is also analyzed for comparison. The six- and eight-particle cumulant and the Lee-Yang zeros methods are used to extract the v2 coefficients, extending previous studies of two- and four-particle correlations. For both the p−Pb and PbPb systems, the v2 values obtained with correlations among more than four particles are consistent with previously published four-particle results. These data support the interpretation of a collective origin for the previously observed long-range (large Δη) correlations in both systems. The ratios of v2 values corresponding to correlations including different numbers of particles are compared to theoretical predictions that assume a hydrodynamic behavior of a p−Pb system dominated by fluctuations in the positions of participant nucleons. These results provide new insights into the multiparticle dynamics of collision systems with a very small overlapping region.
Date
2015-07-03
Publisher
American Physical Society
Description
Due to copyright restrictions, the access to the full text of this article is only available via subscription.