Publication:
A numerical study of a single unsteady laminar slot jet in a confined structure

Placeholder

Institution Authors

Research Projects

Journal Title

Journal ISSN

Volume Title

Type

conferenceObject

Sub Type

Conference paper

Access

restrictedAccess

Publication Status

published

Journal Issue

Abstract

With the inherit advantages of air cooling, jet impingement can produce a factor of two or higher heat transfer than conventional fan flow over bodies. Therefore, impinging jets can solve a number of electronics thermal issues. Those jets produce complex flow and thermal structures leading to non-uniform and non-monotonic profiles on target surfaces. A numerical study is performed to investigate the flow and heat transfer characteristics of an unsteady laminar impinging jet emanated from a single high-aspect ratio rectangular (slot) nozzle in a confined arrangement. The spacing between the target plate and the nozzle is such that the jet would still be in its potential core length as it was in a free axial jet. Following the initial transients, flow and heat transfer parameters still vary considerably in time that the instantaneous and time-averaged values of surface profiles are not identical. Instantaneous surface pressure distributions exhibit that the stagnation point translates periodically around the initial jet-symmetry line and the surface profiles demonstrate off-center (non-stagnation point) peaks.

Date

2013

Publisher

ASME

Description

Due to copyright restrictions, the access to the full text of this article is only available via subscription.

Keywords

Citation


0

Views

0

Downloads