Publication: Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared
Institution Authors
Journal Title
Journal ISSN
Volume Title
Type
article
Sub Type
Access
restrictedAccess
Publication Status
published
Abstract
We demonstrate the coexistence of different near-field thermal radiation regimes between two layers supporting surface phonon polaritons (SPhPs) in the infrared. These regimes existwhen the distance of separation between the media d is much smaller than the dominant emission wavelength. This coexistence is noticed after computations of the near-field radiative heat transfer coefficient hr for silicon carbide films using fluctuational electrodynamics and following an asymptotic analysis of hr . We show that the emergence of these regimes is a function of a dimensionless variable D defined as the ratio of the layer thickness t to d. When D _ 1 for both films, SPhPs dominating near-field radiant energy exchange do not couple within the layers, such that hr follows a d−2 power law as for the case of two planar half-spaces.When D_1 for both layers, the dominant SPhPs couple within the films, thus resulting in a splitting of the spectral distribution of flux into two distinct modes. Despite this splitting, the asymptotic expansion reveals that hr varies as d−2 due to the fact that the spectral bands of high emission and absorption are essentially the same for both films. However, when both layers have a thickness of the order of a nanometer or less, a purely theoretical regime emerges where hr follows a d−4 asymptote. Also, when one layer has D _ 1 while the other one is characterized by D _ 1, there is an important mismatch between the spectral bands of high emission and absorption of the films, thus resulting in a hr varying as d−3. These various near-field thermal radiation regimes are finally summarized in a comprehensive regime map. This map provides a clear understanding of near-field thermal radiation regimes between two layers, which are particularly important for designing highly efficient nanoscale-gap thermophotovoltaic power generation devices.
Date
2011
Publisher
American Physical Society