Publication:
Variational bayesian multiple instance learning with gaussian processes

dc.contributor.authorHaussmann, M.
dc.contributor.authorHamprecht, F. A.
dc.contributor.authorKandemir, Melih
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorKANDEMİR, Malih
dc.date.accessioned2018-02-23T08:50:10Z
dc.date.available2018-02-23T08:50:10Z
dc.date.issued2017
dc.descriptionDue to copyright restrictions, the access to the full text of this article is only available via subscription.
dc.description.abstractGaussian Processes (GPs) are effective Bayesian predictors. We here show for the first time that instance labels of a GP classifier can be inferred in the multiple instance learning (MIL) setting using variational Bayes. We achieve this via a new construction of the bag likelihood that assumes a large value if the instance predictions obey the MIL constraints and a small value otherwise. This construction lets us derive the update rules for the variational parameters analytically, assuring both scalable learning and fast convergence. We observe this model to improve the state of the art in instance label prediction from bag-level supervision in the 20 Newsgroups benchmark, as well as in Barretts cancer tumor localization from histopathology tissue microarray images. Furthermore, we introduce a novel pipeline for weakly supervised object detection naturally complemented with our model, which improves the state of the art on the PASCAL VOC 2007 and 2012 data sets. Last but not least, the performance of our model can be further boosted up using mixed supervision: a combination of weak (bag) and strong (instance) labels.en_US
dc.identifier.doi10.1109/CVPR.2017.93en_US
dc.identifier.endpage819en_US
dc.identifier.isbn978-1-5386-0457-1
dc.identifier.issn1063-6919en_US
dc.identifier.scopus2-s2.0-85044439728
dc.identifier.startpage810en_US
dc.identifier.urihttp://hdl.handle.net/10679/5783
dc.identifier.urihttps://doi.org/10.1109/CVPR.2017.93
dc.identifier.wos000418371400086
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
dc.relation.publicationcategoryInternational
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.keywordsBayes methodsen_US
dc.subject.keywordsCanceren_US
dc.subject.keywordsExpectation-maximisation algorithmen_US
dc.subject.keywordsGaussian processesen_US
dc.subject.keywordsImage classificationen_US
dc.subject.keywordsLearning (artificial intelligence)en_US
dc.subject.keywordsObject detectionen_US
dc.subject.keywordsPattern classificationen_US
dc.subject.keywordsTumoursen_US
dc.titleVariational bayesian multiple instance learning with gaussian processesen_US
dc.typeConference paperen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections