Publication:
Language inference with multi-head automata through reinforcement learning

dc.contributor.authorŞekerci, Alper
dc.contributor.authorKöken, Özlem Salehi
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorKÖKEN, Özlem Salehi
dc.contributor.ozugradstudentŞekerci, Alper
dc.date.accessioned2021-06-14T13:06:59Z
dc.date.available2021-06-14T13:06:59Z
dc.date.issued2020
dc.description.abstractThe purpose of this paper is to use reinforcement learning to model learning agents which can recognize formal languages. Agents are modeled as simple multi-head automaton, a new model of finite automaton that uses multiple heads, and six different languages are formulated as reinforcement learning problems. Two different algorithms are used for optimization. First algorithm is Q-learning which trains gated recurrent units to learn optimal policies. The second one is genetic algorithm which searches for the optimal solution by using evolution-inspired operations. The results show that genetic algorithm performs better than Q-learning algorithm in general but Q-learning algorithm finds solutions faster for regular languages.en_US
dc.identifier.doi10.1109/IJCNN48605.2020.9207156en_US
dc.identifier.isbn978-172816926-2
dc.identifier.scopus2-s2.0-85093867777
dc.identifier.urihttp://hdl.handle.net/10679/7432
dc.identifier.urihttps://doi.org/10.1109/IJCNN48605.2020.9207156
dc.identifier.wos000626021404062
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2020 International Joint Conference on Neural Networks (IJCNN)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsFinite automataen_US
dc.subject.keywordsReinforcement learningen_US
dc.subject.keywordsNeural networken_US
dc.subject.keywordsQ-learningen_US
dc.subject.keywordsGenetic algorithmen_US
dc.titleLanguage inference with multi-head automata through reinforcement learningen_US
dc.typeconferenceObjecten_US
dc.type.subtypeConference paper
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections