Publication:
Calibrating artificial neural networks by global optimization

dc.contributor.authorPinter, Janos D.
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorPINTER, Janos
dc.date.accessioned2016-08-18T08:56:33Z
dc.date.available2016-08-18T08:56:33Z
dc.date.issued2012-01
dc.descriptionDue to copyright restrictions, the access to the full text of this article is only available via subscription.
dc.description.abstractArtificial neural networks (ANNs) are used extensively to model unknown or unspecified functional relationships between the input and output of a “black box” system. In order to apply the generic ANN concept to actual system model fitting problems, a key requirement is the training of the chosen (postulated) ANN structure. Such training serves to select the ANN parameters in order to minimize the discrepancy between modeled system output and the training set of observations. We consider the parameterization of ANNs as a potentially multi-modal optimization problem, and then introduce a corresponding global optimization (GO) framework. The practical viability of the GO based ANN training approach is illustrated by finding close numerical approximations of one-dimensional, yet visibly challenging functions. For this purpose, we have implemented a flexible ANN framework and an easily expandable set of test functions in the technical computing system Mathematica. The MathOptimizer Professional global–local optimization software has been used to solve the induced (multi-dimensional) ANN calibration problems.
dc.description.sponsorshipÖzyeğin University ; Simulation and Optimization Project of Széchenyi István University
dc.identifier.doi10.1016/j.eswa.2011.06.050
dc.identifier.endpage32
dc.identifier.issn0957-4174
dc.identifier.issue1
dc.identifier.scopus2-s2.0-81855207560
dc.identifier.startpage25
dc.identifier.urihttp://hdl.handle.net/10679/4441
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2011.06.050
dc.identifier.volume39
dc.identifier.wos000296214900004
dc.language.isoeng
dc.peerreviewedyes
dc.publicationstatuspublished
dc.publisherElsevier
dc.relation.ispartofExpert Systems with Applications
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsArtificial neural networks
dc.subject.keywordsCalibration of ANNs by global optimization
dc.subject.keywordsANN implementation in Mathematica
dc.subject.keywordsLipschitz Global Optimizer (LGO) solver suite
dc.subject.keywordsMathOptimizer Professional (LGO linked to Mathematica)
dc.subject.keywordsNumerical examples
dc.titleCalibrating artificial neural networks by global optimization
dc.typearticle
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: