Publication:
Mathematical optimization for time series decomposition

dc.contributor.authorGözüyılmaz, Şeyma
dc.contributor.authorKundakcıoğlu, Ömer Erhun
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorKUNDAKCIOĞLU, Ömer Erhun
dc.contributor.ozugradstudentGözüyılmaz, Şeyma
dc.date.accessioned2022-08-16T10:41:10Z
dc.date.available2022-08-16T10:41:10Z
dc.date.issued2021-09
dc.description.abstractDecomposing time series into trend and seasonality components reveals insights used in forecasting and anomaly detection. This study proposes a mathematical optimization approach that addresses several data-related issues in time series decomposition. Our approach does not only handle longer and multiple seasons but also identifies outliers and trend shifts. Numerical experiments on real-world and synthetic problem sets present the effectiveness of the proposed approach.en_US
dc.identifier.doi10.1007/s00291-021-00637-wen_US
dc.identifier.endpage758en_US
dc.identifier.issn0171-6468en_US
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85107560254
dc.identifier.startpage733en_US
dc.identifier.urihttp://hdl.handle.net/10679/7810
dc.identifier.urihttps://doi.org/10.1007/s00291-021-00637-w
dc.identifier.volume43en_US
dc.identifier.wos000658605300001
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringeren_US
dc.relation.ispartofOR Spectrum
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsTime seriesen_US
dc.subject.keywordsSeasonal trend decompositionen_US
dc.subject.keywordsMixed integer nonlinear programmingen_US
dc.titleMathematical optimization for time series decompositionen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: