Publication: Mathematical optimization for time series decomposition
dc.contributor.author | Gözüyılmaz, Şeyma | |
dc.contributor.author | Kundakcıoğlu, Ömer Erhun | |
dc.contributor.department | Industrial Engineering | |
dc.contributor.ozuauthor | KUNDAKCIOĞLU, Ömer Erhun | |
dc.contributor.ozugradstudent | Gözüyılmaz, Şeyma | |
dc.date.accessioned | 2022-08-16T10:41:10Z | |
dc.date.available | 2022-08-16T10:41:10Z | |
dc.date.issued | 2021-09 | |
dc.description.abstract | Decomposing time series into trend and seasonality components reveals insights used in forecasting and anomaly detection. This study proposes a mathematical optimization approach that addresses several data-related issues in time series decomposition. Our approach does not only handle longer and multiple seasons but also identifies outliers and trend shifts. Numerical experiments on real-world and synthetic problem sets present the effectiveness of the proposed approach. | en_US |
dc.identifier.doi | 10.1007/s00291-021-00637-w | en_US |
dc.identifier.endpage | 758 | en_US |
dc.identifier.issn | 0171-6468 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85107560254 | |
dc.identifier.startpage | 733 | en_US |
dc.identifier.uri | http://hdl.handle.net/10679/7810 | |
dc.identifier.uri | https://doi.org/10.1007/s00291-021-00637-w | |
dc.identifier.volume | 43 | en_US |
dc.identifier.wos | 000658605300001 | |
dc.language.iso | eng | en_US |
dc.peerreviewed | yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | OR Spectrum | |
dc.relation.publicationcategory | International Refereed Journal | |
dc.rights | restrictedAccess | |
dc.subject.keywords | Time series | en_US |
dc.subject.keywords | Seasonal trend decomposition | en_US |
dc.subject.keywords | Mixed integer nonlinear programming | en_US |
dc.title | Mathematical optimization for time series decomposition | en_US |
dc.type | article | en_US |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b | |
relation.isOrgUnitOfPublication.latestForDiscovery | 5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.45 KB
- Format:
- Item-specific license agreed upon to submission
- Description: