Publication:
Deterministic neural illumination mapping for efficient auto-white balance correction

dc.contributor.authorKınlı, Osman Furkan
dc.contributor.authorYılmaz, Doğa
dc.contributor.authorÖzcan, Barış
dc.contributor.authorKıraç, Mustafa Furkan
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorKINLI, Osman Furkan
dc.contributor.ozuauthorKIRAÇ, Mustafa Furkan
dc.contributor.ozugradstudentYılmaz, Doğa
dc.contributor.ozugradstudentÖzcan, Barış
dc.date.accessioned2024-02-02T06:24:06Z
dc.date.available2024-02-02T06:24:06Z
dc.date.issued2023
dc.description.abstractAuto-white balance (AWB) correction is a critical operation in image signal processors for accurate and consistent color correction across various illumination scenarios. This paper presents a novel and efficient AWB correction method that achieves at least 35 times faster processing with equivalent or superior performance on high-resolution images for the current state-of-the-art methods. Inspired by deterministic color style transfer, our approach introduces deterministic illumination color mapping, leveraging learnable projection matrices for both canonical illumination form and AWB-corrected output. It involves feeding high-resolution images and corresponding latent representations into a mapping module to derive a canonical form, followed by another mapping module that maps the pixel values to those for the corrected version. This strategy is designed as resolution-agnostic and also enables seamless integration of any pre-trained AWB network as the backbone. Experimental results confirm the effectiveness of our approach, revealing significant performance improvements and reduced time complexity compared to state-of-the-art methods. Our method provides an efficient deep learning-based AWB correction solution, promising real-time, high-quality color correction for digital imaging applications.en_US
dc.identifier.doi10.1109/ICCVW60793.2023.00122en_US
dc.identifier.endpage1139en_US
dc.identifier.isbn979-835030744-3
dc.identifier.scopus2-s2.0-85182940405
dc.identifier.startpage1131en_US
dc.identifier.urihttp://hdl.handle.net/10679/9119
dc.identifier.urihttps://doi.org/10.1109/ICCVW60793.2023.00122
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsAuto white balance correctionen_US
dc.subject.keywordsDeterministic color mappingen_US
dc.subject.keywordsReverse style transferen_US
dc.subject.keywordsStyle factoren_US
dc.titleDeterministic neural illumination mapping for efficient auto-white balance correctionen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: