Publication: Finite-action approximation of Markov decision processes
Institution Authors
Authors
Journal Title
Journal ISSN
Volume Title
Type
bookPart
Access
restrictedAccess
Publication Status
Published
Abstract
In this chapter, we study the finite-action approximation of optimal control policies for discrete-time Markov decision processes (MDPs) with Borel state and action spaces, under discounted and average cost criteria. One main motivation for considering this problem stems from the optimal information transmission problem in networked control systems. In many applications of networked control, perfect transmission of the control actions to an actuator is infeasible when there is a communication channel of finite capacity between a controller and an actuator. Hence, the actions of the controller must be discretized (quantized) to facilitate reliable transmission. Although the problem of optimal information transmission from a plant/sensor to a controller has been studied extensively (see, e.g., [148] and references therein), much less is known about the problem of transmitting actions from a controller to an actuator. Such transmission schemes usually require a simple encoding/decoding rule since the actuator does not have the computational capability of the controller to use complex algorithms. For this reason, time-invariant scalar quantization is a practically useful encoding method for controller-actuator communication.
Date
2018
Publisher
Birkhäuser Basel