Publication:
Tension field inclination angle in steel plate shear walls with beam- connected web plates

Placeholder

Institution Authors

Research Projects

Organizational Unit

Journal Title

Journal ISSN

Volume Title

Type

conferenceObject

Access

restrictedAccess

Publication Status

Published

Journal Issue

Abstract

Steel plate shear walls (SPSWs) are an efficient lateral force-resisting system with thin infill plates, main elements resisting the lateral force, connected to beams and columns on all four edges. Upon lateral loading, thin infill plates (also known as web plates) buckle almost immediately; however, the lateral stiffness and lateral strength of SPSWs are maintained due to a mechanism called tension field action. Steel plate shear walls with beam-connected web plates (B- SPSWs) are an alternative SPSW configuration where the web plates are detached from columns and connected to beams only. As opposed to conventional SPSWs where the full tension field is observed, a partial tension field is developed in the web plates of B-SPSWs due to the difference in connectivity which alters the system behavior significantly. As SPSWs are typically modeled using simplified strip models in which the accurate determination of the tension field inclination angle is of paramount importance, an analytical study is undertaken to quantify the partial tension field inclination angle. Using validated finite element models, beam-connected web plate behavior is characterized, and an equation is proposed for the partial tension field inclination angle.

Date

2019

Publisher

National Technical University of Athens

Description

Keywords

Citation


Page Views

0

File Download

0