Publication: Tension field inclination angle in steel plate shear walls with beam- connected web plates
Institution Authors
Authors
Journal Title
Journal ISSN
Volume Title
Type
conferenceObject
Access
restrictedAccess
Publication Status
Published
Abstract
Steel plate shear walls (SPSWs) are an efficient lateral force-resisting system with thin infill plates, main elements resisting the lateral force, connected to beams and columns on all four edges. Upon lateral loading, thin infill plates (also known as web plates) buckle almost immediately; however, the lateral stiffness and lateral strength of SPSWs are maintained due to a mechanism called tension field action. Steel plate shear walls with beam-connected web plates (B- SPSWs) are an alternative SPSW configuration where the web plates are detached from columns and connected to beams only. As opposed to conventional SPSWs where the full tension field is observed, a partial tension field is developed in the web plates of B-SPSWs due to the difference in connectivity which alters the system behavior significantly. As SPSWs are typically modeled using simplified strip models in which the accurate determination of the tension field inclination angle is of paramount importance, an analytical study is undertaken to quantify the partial tension field inclination angle. Using validated finite element models, beam-connected web plate behavior is characterized, and an equation is proposed for the partial tension field inclination angle.
Date
2019
Publisher
National Technical University of Athens