Publication:
A new era of modeling MOF-based membranes: Cooperation of theory and data science

dc.contributor.authorDemir, Hakan
dc.contributor.authorKeskin, S.
dc.contributor.departmentNatural and Mathematical Sciences
dc.contributor.ozuauthorDEMİR, Hakan
dc.date.accessioned2023-11-07T07:30:53Z
dc.date.available2023-11-07T07:30:53Z
dc.date.issued2024-01
dc.description.abstractMembrane-based separation can offer significant energy savings over conventional separation methods. Given their highly customizable and porous structures, metal–organic frameworks- (MOFs) are considered as next-generation membrane materials that can bring about high separation performance and energy efficiency in various separation applications. Yet, the enormously large number of possible MOF structures necessitates the development and implementation of efficient modeling approaches to expedite the design, discovery, and selection of optimal MOF-based membranes via directing the experimental efforts, time, and resources to the potentially useful membrane materials. With the recent developments in the field of atomic simulations and artificial intelligence methods, a new era of membrane modeling has started. This review focuses on the recent advances made and key strategies used in the modeling of MOF-based membranes and highlight the huge potential of combining atomistic modeling of MOFs with machine learning to explore very large number of MOF membranes and MOF/polymer composite membranes for gas separation. Opportunities and challenges related to the implementation of data-driven approaches to extract useful structure–property relations of MOF-based membranes and to produce design principles for the high-performing MOF-based membranes are discussed.en_US
dc.description.sponsorshipEuropean Union’s Horizon 2020 ; TÜBİTAK
dc.identifier.doi10.1002/mame.202300225en_US
dc.identifier.issn1438-7492en_US
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85171672162
dc.identifier.urihttp://hdl.handle.net/10679/8940
dc.identifier.urihttps://doi.org/10.1002/mame.202300225
dc.identifier.volume309
dc.identifier.wos001068070300001
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherWileyen_US
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/756489-COSMOS
dc.relationinfo:turkey/grantAgreement/TUBITAK/122C227
dc.relation.ispartofMacromolecular Materials and Engineering
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.keywordsGas separationen_US
dc.subject.keywordsMachine learningen_US
dc.subject.keywordsMembranesen_US
dc.subject.keywordsMixed matrix membranesen_US
dc.subject.keywordsMOFsen_US
dc.subject.keywordsMolecular simulationen_US
dc.titleA new era of modeling MOF-based membranes: Cooperation of theory and data scienceen_US
dc.typeReviewen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication7a8a2b87-4f48-440a-a491-3c0b2888cbca
relation.isOrgUnitOfPublication.latestForDiscovery7a8a2b87-4f48-440a-a491-3c0b2888cbca

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A new era of modeling MOF-based membranes Cooperation of theory and data science.pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: