Publication:
Learning system dynamics via deep recurrent and conditional neural systems

dc.contributor.authorPekmezci, Mehmet
dc.contributor.authorUğur, E.
dc.contributor.authorÖztop, Erhan
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorÖZTOP, Erhan
dc.contributor.ozugradstudentPekmezci, Mehmet
dc.date.accessioned2023-01-06T13:34:47Z
dc.date.available2023-01-06T13:34:47Z
dc.date.issued2021
dc.description.abstractAlthough there are various mathematical methods for modeling system dynamics, more general solutions can be achieved using deep learning based on data. Alternative deep learning methods are presented in parallel with the improvements in artificial neural networks. In this study, both LSTM-based recurrent deep learning method and CNMP-based conditional deep learning method were used to learn the system dynamics of the selected system using time series data. The effects of the amount of time series data needed for training and the initial input length needed for predictions made using the learned system model on both methods were analyzed.en_US
dc.identifier.doi10.1109/SIU53274.2021.9478006en_US
dc.identifier.isbn978-166543649-6
dc.identifier.scopus2-s2.0-85111456985
dc.identifier.urihttp://hdl.handle.net/10679/8009
dc.identifier.urihttps://doi.org/10.1109/SIU53274.2021.9478006
dc.identifier.wos000808100700247
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2021 29th Signal Processing and Communications Applications Conference (SIU)
dc.relation.publicationcategoryInternational
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.keywordsCNMPen_US
dc.subject.keywordsDeep learningen_US
dc.subject.keywordsLSTMen_US
dc.subject.keywordsSystem dynamicsen_US
dc.titleLearning system dynamics via deep recurrent and conditional neural systemsen_US
dc.typeConference paperen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections