Publication:
Instagram filter removal on fashionable images

dc.contributor.authorKınlı, Osman Furkan
dc.contributor.authorÖzcan, Barış
dc.contributor.authorKıraç, Mustafa Furkan
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorKINLI, Osman Furkan
dc.contributor.ozuauthorKIRAÇ, Mustafa Furkan
dc.contributor.ozugradstudentÖzcan, Barış
dc.date.accessioned2022-08-15T10:52:58Z
dc.date.available2022-08-15T10:52:58Z
dc.date.issued2021-06
dc.description.abstractSocial media images are generally transformed by filtering to obtain aesthetically more pleasing appearances. However, CNNs generally fail to interpret both the image and its filtered version as the same in the visual analysis of social media images. We introduce Instagram Filter Removal Network (IFRNet) to mitigate the effects of image filters for social media analysis applications. To achieve this, we assume any filter applied to an image substantially injects a piece of additional style information to it, and we consider this problem as a reverse style transfer problem. The visual effects of filtering can be directly removed by adaptively normalizing external style information in each level of the encoder. Experiments demonstrate that IFRNet outperforms all compared methods in quantitative and qualitative comparisons, and has the ability to remove the visual effects to a great extent. Additionally, we present the filter classification performance of our proposed model, and analyze the dominant color estimation on the images unfiltered by all compared methods.en_US
dc.identifier.doi10.1109/CVPRW53098.2021.00083en_US
dc.identifier.endpage745en_US
dc.identifier.isbn978-1-6654-4899-4
dc.identifier.issn2160-7508en_US
dc.identifier.scopus2-s2.0-85116023985
dc.identifier.startpage736en_US
dc.identifier.urihttp://hdl.handle.net/10679/7798
dc.identifier.urihttps://doi.org/10.1109/CVPRW53098.2021.00083
dc.identifier.wos000705890200075
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.titleInstagram filter removal on fashionable imagesen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections