Publication:
Joint lifetime-outage optimization in relay-enabled IoT networks—A deep reinforcement learning approach

dc.contributor.authorHeidarpour, A. R.
dc.contributor.authorHeidarpour, M. R.
dc.contributor.authorArdakani, M.
dc.contributor.authorTellambura, C.
dc.contributor.authorUysal, Murat
dc.contributor.departmentElectrical & Electronics Engineering
dc.contributor.ozuauthorUYSAL, Murat
dc.date.accessioned2023-11-01T06:07:39Z
dc.date.available2023-11-01T06:07:39Z
dc.date.issued2023-01
dc.description.abstractNetwork lifetime maximization in Internet of things (IoT) is of paramount importance to ensure uninterrupted data transmission and reduce the frequency of battery replacement. This letter deals with the joint lifetime-outage optimization in relay-enabled IoT networks employing a multiple relay selection (MRS) scheme. The considered MRS problem is essentially a general nonlinear 0-1 programming which is NP-hard. In this work, we use the application of the double deep Q network (DDQN) algorithm to solve the MRS problem. Our results reveal that the proposed DDQN-MRS scheme can achieve superior performance than the benchmark MRS schemes.en_US
dc.identifier.doi10.1109/LCOMM.2022.3214146en_US
dc.identifier.endpage194en_US
dc.identifier.issn1089-7798en_US
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85139817887
dc.identifier.startpage190en_US
dc.identifier.urihttp://hdl.handle.net/10679/8908
dc.identifier.urihttps://doi.org/10.1109/LCOMM.2022.3214146
dc.identifier.volume27en_US
dc.identifier.wos000965873100001
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Communications Letters
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsCooperative communicationen_US
dc.subject.keywordsDeep reinforcement learningen_US
dc.subject.keywordsInternet of Thingsen_US
dc.subject.keywordsLifetimeen_US
dc.subject.keywordsMultiple relay selectionen_US
dc.titleJoint lifetime-outage optimization in relay-enabled IoT networks—A deep reinforcement learning approachen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication7b58c5c4-dccc-40a3-aaf2-9b209113b763
relation.isOrgUnitOfPublication.latestForDiscovery7b58c5c4-dccc-40a3-aaf2-9b209113b763

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: