Publication:
Data-driven bandwidth prediction models and automated model selection for low latency

dc.contributor.authorBentaleb, A.
dc.contributor.authorBeğen, Ali Cengiz
dc.contributor.authorHarous, S.
dc.contributor.authorZimmermann, R.
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorBEĞEN, Ali Cengiz
dc.date.accessioned2023-04-06T05:41:17Z
dc.date.available2023-04-06T05:41:17Z
dc.date.issued2021
dc.description.abstractToday's HTTP adaptive streaming solutions use a variety of algorithms to measure the available network bandwidth and predict its future values. Bandwidth prediction, which is already a difficult task, must be more accurate when lower latency is desired due to the shorter time available to react to bandwidth changes, and when mobile networks are involved due to their inherently more frequent and potentially larger bandwidth fluctuations. Any inaccuracy in bandwidth prediction results in flawed adaptation decisions, which will in turn translate into a diminished viewer experience. We propose an Automated Model for Prediction (AMP) that encompasses techniques for bandwidth prediction and model auto-selection specifically designed for low-latency live steaming with chunked transfer encoding. We first study statistical and computational intelligence techniques to implement a suite of bandwidth prediction models that can work accurately under a broad range of network conditions, and second, we introduce an automated prediction model selection method. We confirm the effectiveness of our solution through trace-driven live streaming experiments.en_US
dc.description.sponsorshipMinistry of Education, Singapore ; UAE University
dc.identifier.doi10.1109/TMM.2020.3013387en_US
dc.identifier.endpage2601en_US
dc.identifier.issn1520-9210en_US
dc.identifier.scopus2-s2.0-85113978739
dc.identifier.startpage2588en_US
dc.identifier.urihttp://hdl.handle.net/10679/8110
dc.identifier.urihttps://doi.org/10.1109/TMM.2020.3013387
dc.identifier.volume23en_US
dc.identifier.wos000688215600004
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Transactions on Multimedia
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsABRen_US
dc.subject.keywordsBandwidth predictionen_US
dc.subject.keywordsChunked transfer encodingen_US
dc.subject.keywordsCMAFen_US
dc.subject.keywordsDASHen_US
dc.subject.keywordsHTTP adaptive streamingen_US
dc.subject.keywordsLow latencyen_US
dc.titleData-driven bandwidth prediction models and automated model selection for low latencyen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections