Publication: An extension to the classical mean–variance portfolio optimization model
dc.contributor.author | Ötken, Çelen Naz | |
dc.contributor.author | Organ, Zeynel Batuhan | |
dc.contributor.author | Yıldırım, Elif Ceren | |
dc.contributor.author | Çamlıca, Mustafa | |
dc.contributor.author | Cantürk, Volkan Selim | |
dc.contributor.author | Duman, Ekrem | |
dc.contributor.author | Teksan, Zehra Melis | |
dc.contributor.author | Kayış, Enis | |
dc.contributor.department | Industrial Engineering | |
dc.contributor.ozuauthor | TEKSAN, Zehra Melis | |
dc.contributor.ozuauthor | KAYIŞ, Enis | |
dc.contributor.ozugradstudent | Ötken, Çelen Naz | |
dc.contributor.ozugradstudent | Organ, Zeynel Batuhan | |
dc.contributor.ozugradstudent | Yıldırım, Elif Ceren | |
dc.contributor.ozugradstudent | Çamlıca, Mustafa | |
dc.contributor.ozugradstudent | Cantürk, Volkan Selim | |
dc.contributor.ozugradstudent | Duman, Ekrem | |
dc.date.accessioned | 2020-07-06T12:48:34Z | |
dc.date.available | 2020-07-06T12:48:34Z | |
dc.date.issued | 2019-07 | |
dc.description.abstract | The purpose of this study is to find a portfolio that maximizes the risk-adjusted returns subject to constraints frequently faced during portfolio management by extending the classical Markowitz mean-variance portfolio optimization model. We propose a new two-step heuristic approach, GRASP & SOLVER, that evaluates the desirability of an asset by combining several properties about it into a single parameter. Using a real-life data set, we conduct a simulation study to compare our solution to a benchmark (S&P 500 index). We find that our method generates solutions satisfying nearly all of the constraints within reasonable computational time (under an hour), at the expense of a 13% reduction in the annual return of the portfolio, highlighting the effect of introducing these practice-based constraints. | en_US |
dc.identifier.doi | 10.1080/0013791X.2019.1636440 | en_US |
dc.identifier.endpage | 321 | en_US |
dc.identifier.issn | 0013-791X | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85071069728 | |
dc.identifier.startpage | 310 | en_US |
dc.identifier.uri | http://hdl.handle.net/10679/6709 | |
dc.identifier.uri | https://doi.org/10.1080/0013791X.2019.1636440 | |
dc.identifier.volume | 64 | en_US |
dc.identifier.wos | 000477262800001 | |
dc.language.iso | eng | en_US |
dc.peerreviewed | yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.relation.ispartof | Engineering Economist | |
dc.relation.publicationcategory | International Refereed Journal | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.title | An extension to the classical mean–variance portfolio optimization model | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b | |
relation.isOrgUnitOfPublication.latestForDiscovery | 5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.45 KB
- Format:
- Item-specific license agreed upon to submission
- Description: