Publication:
An extension to the classical mean–variance portfolio optimization model

dc.contributor.authorÖtken, Çelen Naz
dc.contributor.authorOrgan, Zeynel Batuhan
dc.contributor.authorYıldırım, Elif Ceren
dc.contributor.authorÇamlıca, Mustafa
dc.contributor.authorCantürk, Volkan Selim
dc.contributor.authorDuman, Ekrem
dc.contributor.authorTeksan, Zehra Melis
dc.contributor.authorKayış, Enis
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorTEKSAN, Zehra Melis
dc.contributor.ozuauthorKAYIŞ, Enis
dc.contributor.ozugradstudentÖtken, Çelen Naz
dc.contributor.ozugradstudentOrgan, Zeynel Batuhan
dc.contributor.ozugradstudentYıldırım, Elif Ceren
dc.contributor.ozugradstudentÇamlıca, Mustafa
dc.contributor.ozugradstudentCantürk, Volkan Selim
dc.contributor.ozugradstudentDuman, Ekrem
dc.date.accessioned2020-07-06T12:48:34Z
dc.date.available2020-07-06T12:48:34Z
dc.date.issued2019-07
dc.description.abstractThe purpose of this study is to find a portfolio that maximizes the risk-adjusted returns subject to constraints frequently faced during portfolio management by extending the classical Markowitz mean-variance portfolio optimization model. We propose a new two-step heuristic approach, GRASP & SOLVER, that evaluates the desirability of an asset by combining several properties about it into a single parameter. Using a real-life data set, we conduct a simulation study to compare our solution to a benchmark (S&P 500 index). We find that our method generates solutions satisfying nearly all of the constraints within reasonable computational time (under an hour), at the expense of a 13% reduction in the annual return of the portfolio, highlighting the effect of introducing these practice-based constraints.en_US
dc.identifier.doi10.1080/0013791X.2019.1636440en_US
dc.identifier.endpage321en_US
dc.identifier.issn0013-791Xen_US
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85071069728
dc.identifier.startpage310en_US
dc.identifier.urihttp://hdl.handle.net/10679/6709
dc.identifier.urihttps://doi.org/10.1080/0013791X.2019.1636440
dc.identifier.volume64en_US
dc.identifier.wos000477262800001
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherTaylor & Francisen_US
dc.relation.ispartofEngineering Economist
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.titleAn extension to the classical mean–variance portfolio optimization modelen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: