Publication:
Big data–enabled sign prediction for Borsa Istanbul intraday equity prices

dc.contributor.authorKılıç, A.
dc.contributor.authorGüloğlu, B.
dc.contributor.authorYalçın, Atakan
dc.contributor.authorÜstündağ, A.
dc.contributor.departmentInternational Finance
dc.contributor.ozuauthorYALÇIN, Atakan
dc.date.accessioned2024-02-27T07:26:03Z
dc.date.available2024-02-27T07:26:03Z
dc.date.issued2023-12
dc.description.abstractThis paper employs a big data source, the Borsa Istanbul's “data analytics” information, to predict 5-min up, down, and steady signs drawn from closing price changes. Seven machine learning algorithms are compared with 2018 data for the entire year. Success levels for each method are reported for 26 liquid stocks in terms of macro-averaged F-measures. For the 5-min lagged data, nine equities are found to be statistically predictable. For lagged data over longer periods, equities remain predictable, decreasing gradually to zero as the markets absorb the data over time. Furthermore, economic gains for the nine equities are analyzed with algorithms where short selling is allowed or not allowed depending on these predictions. Four equities are found to yield more economic gains via machine learning–supported trading strategies than the equities' own price performances. Under the “efficient market hypothesis,” the results imply a lack of “semistrong-form efficiency.”en_US
dc.description.versionPublisher versionen_US
dc.identifier.doi10.1016/j.bir.2023.08.005en_US
dc.identifier.endpageS52en_US
dc.identifier.issn2214-8450en_US
dc.identifier.scopus2-s2.0-85183813975
dc.identifier.startpageS38en_US
dc.identifier.urihttp://hdl.handle.net/10679/9230
dc.identifier.urihttps://doi.org/10.1016/j.bir.2023.08.005
dc.identifier.volume23en_US
dc.identifier.wos001154222500005
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherElsevieren_US
dc.relation.ispartofBorsa Istanbul Review
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsBorsa Istanbulen_US
dc.subject.keywordsData analyticsen_US
dc.subject.keywordsIntradayen_US
dc.subject.keywordsMachine learningen_US
dc.subject.keywordsMarket efficiencyen_US
dc.subject.keywordsSign predictionen_US
dc.titleBig data–enabled sign prediction for Borsa Istanbul intraday equity pricesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublicatione7fcb811-af49-4ec2-b289-d39850ce6728
relation.isOrgUnitOfPublication.latestForDiscoverye7fcb811-af49-4ec2-b289-d39850ce6728

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Big data–enabled sign prediction for Borsa Istanbul intraday equity prices.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: