Publication:
Big data–enabled sign prediction for Borsa Istanbul intraday equity prices

dc.contributor.authorKılıç, A.
dc.contributor.authorGüloğlu, B.
dc.contributor.authorYalçın, Atakan
dc.contributor.authorÜstündağ, A.
dc.contributor.departmentInternational Finance
dc.contributor.ozuauthorYALÇIN, Atakan
dc.date.accessioned2024-02-27T07:26:03Z
dc.date.available2024-02-27T07:26:03Z
dc.date.issued2023-12
dc.description.abstractThis paper employs a big data source, the Borsa Istanbul's “data analytics” information, to predict 5-min up, down, and steady signs drawn from closing price changes. Seven machine learning algorithms are compared with 2018 data for the entire year. Success levels for each method are reported for 26 liquid stocks in terms of macro-averaged F-measures. For the 5-min lagged data, nine equities are found to be statistically predictable. For lagged data over longer periods, equities remain predictable, decreasing gradually to zero as the markets absorb the data over time. Furthermore, economic gains for the nine equities are analyzed with algorithms where short selling is allowed or not allowed depending on these predictions. Four equities are found to yield more economic gains via machine learning–supported trading strategies than the equities' own price performances. Under the “efficient market hypothesis,” the results imply a lack of “semistrong-form efficiency.”
dc.description.versionPublisher version
dc.identifier.doi10.1016/j.bir.2023.08.005
dc.identifier.endpageS52
dc.identifier.issn2214-8450
dc.identifier.scopus2-s2.0-85183813975
dc.identifier.startpageS38
dc.identifier.urihttp://hdl.handle.net/10679/9230
dc.identifier.urihttps://doi.org/10.1016/j.bir.2023.08.005
dc.identifier.volume23
dc.identifier.wos001154222500005
dc.language.isoeng
dc.peerreviewedyes
dc.publicationstatusPublished
dc.publisherElsevier
dc.relation.ispartofBorsa Istanbul Review
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsopenAccess
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordsBorsa Istanbul
dc.subject.keywordsData analytics
dc.subject.keywordsIntraday
dc.subject.keywordsMachine learning
dc.subject.keywordsMarket efficiency
dc.subject.keywordsSign prediction
dc.titleBig data–enabled sign prediction for Borsa Istanbul intraday equity prices
dc.typearticle
dspace.entity.typePublication
relation.isOrgUnitOfPublicatione7fcb811-af49-4ec2-b289-d39850ce6728
relation.isOrgUnitOfPublication.latestForDiscoverye7fcb811-af49-4ec2-b289-d39850ce6728

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Big data–enabled sign prediction for Borsa Istanbul intraday equity prices.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: