Publication:
Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators

dc.contributor.authorFrancoeur, M.
dc.contributor.authorVaillon, R.
dc.contributor.authorMengüç, Mustafa Pınar
dc.contributor.departmentMechanical Engineering
dc.contributor.ozuauthorMENGÜÇ, Mustafa Pınar
dc.date.accessioned2012-08-23T14:03:34Z
dc.date.available2012-08-23T14:03:34Z
dc.date.issued2011-06
dc.descriptionDue to copyright restrictions, the access to the full text of this article is only available via subscription.en_US
dc.description.abstractThe thermal impacts on the performance of nanoscale-gap thermophotovoltaic (nano-TPV) power generators are investigated using a coupled near-field thermal radiation, charge, and heat transport formulation. A nano-TPV device consisting of a tungsten radiator, maintained at 2000 K, and cells made of indium gallium antimonide (In0.18Ga0.82 Sb) are considered; the thermal management system is modeled assuming a convective boundary with a fluid temperature fixed at 293 K. Results reveal that nano-TPV performance characteristics are closely related to the temperature of the cell. When the radiator and the junction are separated by a 20 nm vacuum gap, the power output and the conversion efficiency of the system are respectively 5.83 × 105 Wm−2 and 24.8% at 300 K, whereas these values drop to 8.09 × 104 Wm−2 and 3.2% at 500 K. In order to maintain the cell at room temperature, a heat transfer coefficient as high as 105 Wm−2 K−1 is required for nanometer-size vacuum gaps. The reason for this is that thermal radiation since thermal radiation enhancement beyond the blackbody from a bulk radiator of tungsten is broadband in nature, while only a certain part of the spectrum is useful for maximizing nano-TPV performance. In future studies, near-field radiation spectral conditions leading to optimal performance characteristics of the device will be investigated.en_US
dc.description.sponsorshipKentucky Science and Engineering Foundation ; European Commission ; TÜBİTAK
dc.identifier.doi10.1109/TEC.2011.2118212
dc.identifier.endpage698
dc.identifier.issn0885-8969
dc.identifier.issue2
dc.identifier.scopus2-s2.0-79957524561
dc.identifier.startpage686
dc.identifier.urihttp://hdl.handle.net/10679/247
dc.identifier.urihttps://doi.org/10.1109/TEC.2011.2118212
dc.identifier.volume26
dc.identifier.wos000290735200031
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatuspublisheden_US
dc.publisherIEEEen_US
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/239382en_US
dc.relationinfo:turkey/grantAgreement/TUBITAK/109M170en_US
dc.relation.ispartofIEEE Transactions on Energy Conversion
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.keywordsEnergy conversionen_US
dc.subject.keywordsNanoscale-gap thermophotovoltaicen_US
dc.subject.keywordsNear-field thermal radiationen_US
dc.subject.keywordsThermal effectsen_US
dc.titleThermal impacts on the performance of nanoscale-gap thermophotovoltaic power generatorsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublicationdaa77406-1417-4308-b110-2625bf3b3dd7
relation.isOrgUnitOfPublication.latestForDiscoverydaa77406-1417-4308-b110-2625bf3b3dd7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: