Publication:
Polarity classification of twitter messages using audio processing

dc.contributor.authorDuşçu, Mihail
dc.contributor.authorDanış, Dilek Günneç
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorDANIŞ, Dilek Günneç
dc.date.accessioned2021-02-18T19:42:23Z
dc.date.available2021-02-18T19:42:23Z
dc.date.issued2020-11
dc.description.abstractPolarity classification is one of the most fundamental problems in sentiment analysis. In this paper, we propose a novel method, Sound Cosine Similaritye Matching, for polarity classification of Twitter messages which incorporates features based on audio data rather than on grammar or other text properties, i.e., eliminates the dependency on external dictionaries. It is useful especially for correctly identifying misspelled or shortened words that are frequently encountered in text from online social media. Method performance is evaluated in two levels: i) capture rate of the misspelled and shortened words, ii) classification performance of the feature set. Our results show that classification accuracy is improved, compared to two other models in the literature, when the proposed features are used.en_US
dc.identifier.doi10.1016/j.ipm.2020.102346en_US
dc.identifier.issn0306-4573en_US
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85087902248
dc.identifier.urihttp://hdl.handle.net/10679/7336
dc.identifier.urihttps://doi.org/10.1016/j.ipm.2020.102346
dc.identifier.volume57en_US
dc.identifier.wos000582206800060
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherElsevieren_US
dc.relation.ispartofInformation Processing and Management
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsAudio processingen_US
dc.subject.keywordsMachine learningen_US
dc.subject.keywordsSentiment analysisen_US
dc.subject.keywordsText normalizationen_US
dc.subject.keywordsTwitteren_US
dc.titlePolarity classification of twitter messages using audio processingen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: