Publication:
Polarity classification of twitter messages using audio processing

dc.contributor.authorDuşçu, Mihail
dc.contributor.authorDanış, Dilek Günneç
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorDANIŞ, Dilek Günneç
dc.date.accessioned2021-02-18T19:42:23Z
dc.date.available2021-02-18T19:42:23Z
dc.date.issued2020-11
dc.description.abstractPolarity classification is one of the most fundamental problems in sentiment analysis. In this paper, we propose a novel method, Sound Cosine Similaritye Matching, for polarity classification of Twitter messages which incorporates features based on audio data rather than on grammar or other text properties, i.e., eliminates the dependency on external dictionaries. It is useful especially for correctly identifying misspelled or shortened words that are frequently encountered in text from online social media. Method performance is evaluated in two levels: i) capture rate of the misspelled and shortened words, ii) classification performance of the feature set. Our results show that classification accuracy is improved, compared to two other models in the literature, when the proposed features are used.
dc.identifier.doi10.1016/j.ipm.2020.102346
dc.identifier.issn0306-4573
dc.identifier.issue6
dc.identifier.scopus2-s2.0-85087902248
dc.identifier.urihttp://hdl.handle.net/10679/7336
dc.identifier.urihttps://doi.org/10.1016/j.ipm.2020.102346
dc.identifier.volume57
dc.identifier.wos000582206800060
dc.language.isoeng
dc.peerreviewedyes
dc.publicationstatusPublished
dc.publisherElsevier
dc.relation.ispartofInformation Processing and Management
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsAudio processing
dc.subject.keywordsMachine learning
dc.subject.keywordsSentiment analysis
dc.subject.keywordsText normalization
dc.subject.keywordsTwitter
dc.titlePolarity classification of twitter messages using audio processing
dc.typearticle
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: