Publication:
Near-field radiative transfer for biologically inspired structures

Placeholder

Institution Authors

Research Projects

Journal Title

Journal ISSN

Volume Title

Type

Book chapter

Access

info:eu-repo/semantics/restrictedAccess

Publication Status

Published

Journal Issue

Abstract

The field of biomimetic nanophotonics has the potential to open up unprecedented pathways for the development of sophisticated and unique devices and systems as it brings different disciplines together, including biology, physics, optics, thermal sciences, design, and nanoscale manufacturing. Given the complexity of the field, it is crucial to develop the computational tools necessary to predict the interaction between different phenomena before delving into expensive laboratory studies. In this chapter, we explore biomimetic nanophotonic systems from the standpoint of thermal and computational sciences. Particularly, we focus on near-field radiative transfer for different structures by using finite-difference time domain algorithm for the solution of problems in complex geometries. We provide the results for two case studies, one inspired by the Morpho didius butterfly and the other one from neon tetra Paracheirodon innesi fish, showing that significant spectrally selective bands can be obtained. We expect that these approaches are eventually to be adapted for new manufacturing paradigms which may be useful for the development of next-generation sensors, energy harvesting devices, and radiative cooling mechanisms.

Date

2023-01-01

Publisher

Elsevier

Description

Keywords

Citation


Page Views

0

File Download

0