Publication:
Symbolism overshadows the effect of physical size in supra-second temporal illusions

Placeholder

Institution Authors

KARŞILAR, Hakan

Authors

Karşılar, Hakan
Balcı, F.

Research Projects

Journal Title

Journal ISSN

Volume Title

Type

Article

Access

info:eu-repo/semantics/restrictedAccess

Publication Status

Published

Journal Issue

Abstract

The perception of quantities has been suggested to rely on shared, magnitude-based representational systems that preserve metric properties. As such, different quantifiable dimensions that can characterize any given stimulus (e.g., size, speed, or numerosity) have been shown to modulate the perceived duration of these stimuli-a finding that has been attributed to cross-modal interaction among the quantity representations. However, these results are typically based on the isolated effects of a single stimulus dimension, leaving their potential combined effects uncharted. In the present study we aimed to investigate the joint effects of numerical magnitude and physical size on perceived time. In four complementary experiments, participants categorized six durations as "short" or "long," which were presented through combinations of Hindu-Arabic numerals in three font sizes, as well as with simple shapes (rectangles) and unfamiliar symbols (Klingon letters), the sizes of which corresponded to the font sizes of the Hindu-Arabic numerals. Our results showed temporal underestimation for the smallest numeral in the set (3), with no effects of font size on perceived duration. The perceived durations were longest for the physically smallest geometric stimuli (i.e., a rectangle), and the font size of symbol-like stimuli (i.e., Klingon letters) was not found to have an effect on perceived time. Finally, presenting only one numeral (6) instead of the rectangle once again eliminated the relationship between physical size and perceived time, suggesting an overshadowing of physical-size-based influences on temporal choice behavior, presumably by perceived symbolism. Our results point at the complex nature of the interaction between different magnitude representations.

Date

2019-11

Publisher

Springer Nature

Description

Keywords

Citation

Collections


Page Views

0

File Download

0