Publication:
Using different loss functions with YOLACT++ for real-time instance segmentation

dc.contributor.authorKöleş, Selin
dc.contributor.authorKarakaş, Selami
dc.contributor.authorNdigande, Alain Patrick
dc.contributor.authorÖzer, Sedat
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorÖZER, Sedat
dc.contributor.ozugradstudentKöleş, Selin
dc.contributor.ozugradstudentKarakaş, Selami
dc.contributor.ozugradstudentNdigande, Alain Patrick
dc.date.accessioned2024-01-23T10:09:32Z
dc.date.available2024-01-23T10:09:32Z
dc.date.issued2023
dc.description.abstractIn this paper, we study and analyze the performance of various loss functions on a recently proposed real-time instance segmentation algorithm, YOLACT++. In particular, we study the loss functions, including Huber Loss, Binary Cross Entropy (BCE), Mean Square Error (MSE), Log-Cosh-Dice Loss, and their various combinations within the YOLACT++ architecture. We demonstrate that we can use different loss functions from the default loss function (BCE) of YOLACT++ for improved real-time segmentation results. In our experiments, we show that a certain combination of two loss functions improves the segmentation performance of YOLACT++ in terms of the mean Average Precision (mAP) metric on Cigarettes dataset, when compared to its original loss function.en_US
dc.identifier.doi10.1109/TSP59544.2023.10197832en_US
dc.identifier.endpage267en_US
dc.identifier.isbn979-835030396-4
dc.identifier.scopus2-s2.0-85168650663
dc.identifier.startpage264en_US
dc.identifier.urihttp://hdl.handle.net/10679/9062
dc.identifier.urihttps://doi.org/10.1109/TSP59544.2023.10197832
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2023 46th International Conference on Telecommunications and Signal Processing (TSP)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsInstance segmentationen_US
dc.subject.keywordsLoss functionen_US
dc.subject.keywordsReal time segmentationen_US
dc.subject.keywordsYOLACT++en_US
dc.titleUsing different loss functions with YOLACT++ for real-time instance segmentationen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections