Publication: Using different loss functions with YOLACT++ for real-time instance segmentation
Institution Authors
Journal Title
Journal ISSN
Volume Title
Type
conferenceObject
Access
restrictedAccess
Publication Status
Published
Abstract
In this paper, we study and analyze the performance of various loss functions on a recently proposed real-time instance segmentation algorithm, YOLACT++. In particular, we study the loss functions, including Huber Loss, Binary Cross Entropy (BCE), Mean Square Error (MSE), Log-Cosh-Dice Loss, and their various combinations within the YOLACT++ architecture. We demonstrate that we can use different loss functions from the default loss function (BCE) of YOLACT++ for improved real-time segmentation results. In our experiments, we show that a certain combination of two loss functions improves the segmentation performance of YOLACT++ in terms of the mean Average Precision (mAP) metric on Cigarettes dataset, when compared to its original loss function.
Date
2023
Publisher
IEEE