Publication: Learning medical suturing primitives for autonomous suturing
dc.contributor.author | Amirshirzad, Negin | |
dc.contributor.author | Sunal, Begüm | |
dc.contributor.author | Bebek, Özkan | |
dc.contributor.author | Öztop, Erhan | |
dc.contributor.department | Computer Science | |
dc.contributor.department | Mechanical Engineering | |
dc.contributor.ozuauthor | BEBEK, Özkan | |
dc.contributor.ozuauthor | ÖZTOP, Erhan | |
dc.contributor.ozugradstudent | Amirshirzad, Negin | |
dc.contributor.ozugradstudent | Sunal, Begüm | |
dc.date.accessioned | 2023-05-15T07:32:35Z | |
dc.date.available | 2023-05-15T07:32:35Z | |
dc.date.issued | 2021 | |
dc.description.abstract | This paper focuses on a learning from demonstration approach for autonomous medical suturing. A conditional neural network is used to learn and generate suturing primitives trajectories which were conditioned on desired context points. Using our designed GUI a user could plan and select suturing insertion points. Given the insertion point our model generates joint trajectories on real time satisfying this condition. The generated trajectories combined with a kinematic feedback loop were used to drive an 11-DOF robotic system and shows satisfying abilities to learn and perform suturing primitives autonomously having only a few demonstrations of the movements. | en_US |
dc.description.sponsorship | TÜBİTAK | |
dc.identifier.doi | 10.1109/CASE49439.2021.9551415 | en_US |
dc.identifier.endpage | 261 | en_US |
dc.identifier.isbn | 978-166541873-7 | |
dc.identifier.issn | 2161-8070 | en_US |
dc.identifier.scopus | 2-s2.0-85117054261 | |
dc.identifier.startpage | 256 | en_US |
dc.identifier.uri | http://hdl.handle.net/10679/8261 | |
dc.identifier.uri | https://doi.org/10.1109/CASE49439.2021.9551415 | |
dc.identifier.volume | 2021 | en_US |
dc.identifier.wos | 000878693200034 | |
dc.language.iso | eng | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation | info:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/119E036 | |
dc.relation.ispartof | 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE) | |
dc.relation.publicationcategory | International | |
dc.rights | restrictedAccess | |
dc.title | Learning medical suturing primitives for autonomous suturing | en_US |
dc.type | conferenceObject | en_US |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 85662e71-2a61-492a-b407-df4d38ab90d7 | |
relation.isOrgUnitOfPublication | daa77406-1417-4308-b110-2625bf3b3dd7 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 85662e71-2a61-492a-b407-df4d38ab90d7 |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.45 KB
- Format:
- Item-specific license agreed upon to submission
- Description: