Publication:
Learning medical suturing primitives for autonomous suturing

dc.contributor.authorAmirshirzad, Negin
dc.contributor.authorSunal, Begüm
dc.contributor.authorBebek, Özkan
dc.contributor.authorÖztop, Erhan
dc.contributor.departmentComputer Science
dc.contributor.departmentMechanical Engineering
dc.contributor.ozuauthorBEBEK, Özkan
dc.contributor.ozuauthorÖZTOP, Erhan
dc.contributor.ozugradstudentAmirshirzad, Negin
dc.contributor.ozugradstudentSunal, Begüm
dc.date.accessioned2023-05-15T07:32:35Z
dc.date.available2023-05-15T07:32:35Z
dc.date.issued2021
dc.description.abstractThis paper focuses on a learning from demonstration approach for autonomous medical suturing. A conditional neural network is used to learn and generate suturing primitives trajectories which were conditioned on desired context points. Using our designed GUI a user could plan and select suturing insertion points. Given the insertion point our model generates joint trajectories on real time satisfying this condition. The generated trajectories combined with a kinematic feedback loop were used to drive an 11-DOF robotic system and shows satisfying abilities to learn and perform suturing primitives autonomously having only a few demonstrations of the movements.en_US
dc.description.sponsorshipTÜBİTAK
dc.identifier.doi10.1109/CASE49439.2021.9551415en_US
dc.identifier.endpage261en_US
dc.identifier.isbn978-166541873-7
dc.identifier.issn2161-8070en_US
dc.identifier.scopus2-s2.0-85117054261
dc.identifier.startpage256en_US
dc.identifier.urihttp://hdl.handle.net/10679/8261
dc.identifier.urihttps://doi.org/10.1109/CASE49439.2021.9551415
dc.identifier.volume2021en_US
dc.identifier.wos000878693200034
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/119E036
dc.relation.ispartof2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.titleLearning medical suturing primitives for autonomous suturingen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublicationdaa77406-1417-4308-b110-2625bf3b3dd7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: