Publication:
Q-learning in regularized mean-field games

dc.contributor.authorAnahtarcı, Berkay
dc.contributor.authorKarıksız, Can Deha
dc.contributor.authorSaldı, N.
dc.contributor.departmentNatural and Mathematical Sciences
dc.contributor.ozuauthorANAHTARCI, Berkay
dc.contributor.ozuauthorKARIKSIZ, Can Deha
dc.date.accessioned2023-09-08T11:51:00Z
dc.date.available2023-09-08T11:51:00Z
dc.date.issued2023-03
dc.description.abstractIn this paper, we introduce a regularized mean-field game and study learning of this game under an infinite-horizon discounted reward function. Regularization is introduced by adding a strongly concave regularization function to the one-stage reward function in the classical mean-field game model. We establish a value iteration based learning algorithm to this regularized mean-field game using fitted Q-learning. The regularization term in general makes reinforcement learning algorithm more robust to the system components. Moreover, it enables us to establish error analysis of the learning algorithm without imposing restrictive convexity assumptions on the system components, which are needed in the absence of a regularization term.en_US
dc.description.sponsorshipBAGEP Award of the Science Academy
dc.identifier.doi10.1007/s13235-022-00450-2en_US
dc.identifier.endpage117en_US
dc.identifier.issn2153-0785en_US
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85130543438
dc.identifier.startpage89en_US
dc.identifier.urihttp://hdl.handle.net/10679/8777
dc.identifier.urihttps://doi.org/10.1007/s13235-022-00450-2
dc.identifier.volume13en_US
dc.identifier.wos000800996400001
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringeren_US
dc.relation.ispartofDynamic Games and Applications
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsDiscounted rewarden_US
dc.subject.keywordsMean-field gamesen_US
dc.subject.keywordsQ-learningen_US
dc.subject.keywordsRegularized Markov decision processesen_US
dc.titleQ-learning in regularized mean-field gamesen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication7a8a2b87-4f48-440a-a491-3c0b2888cbca
relation.isOrgUnitOfPublication.latestForDiscovery7a8a2b87-4f48-440a-a491-3c0b2888cbca

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: