Publication:
Estimating roadway horizontal alignment using artificial neural network

dc.contributor.authorBartın, Bekir Oğuz
dc.contributor.authorJami, Mojibulrahman
dc.contributor.authorÖzbay, K.
dc.contributor.departmentCivil Engineering
dc.contributor.ozuauthorBARTIN, Bekir Oğuz
dc.contributor.ozugradstudentJami, Mojibulrahman
dc.date.accessioned2023-05-15T08:16:48Z
dc.date.available2023-05-15T08:16:48Z
dc.date.issued2021
dc.description.abstractThis paper presents a novel approach for extracting horizontal alignment data from Geographic Information Systems (GIS) centerline shapefiles. Estimating the road horizontal alignment is formulated as a minimization problem, and a two-tiered approach is proposed. Step 1 is the segmentation: determining the curved and tangent sections along a roadway. Step 1 is conducted by applying an artificial neural network (ANN) model, trained using two different datasets, actual and synthetic alignment data, generated using subjective decision on whether a vertex is part of a curved or a tangent section. Step 2 uses the segmentation results and estimates the curvature information using a known algebraic method, called Taubin circle fit. A 10.72 mile long freeway section is used for evaluating the accuracy of the proposed approach, of which the actual alignment information is available. Six different metrics are used for evaluation. The results show the high accuracy of the ANN method, where the overlap of estimated and actual section lengths are 0.97 and 0.92 for curved and tangent sections, respectively.en_US
dc.description.sponsorshipNJDOT ; C2SMART, a Tier 1 UTC at New York University - USDOT
dc.identifier.doi10.1109/ITSC48978.2021.9565062en_US
dc.identifier.endpage2250en_US
dc.identifier.isbn978-172819142-3
dc.identifier.scopus2-s2.0-85118456028
dc.identifier.startpage2245en_US
dc.identifier.urihttp://hdl.handle.net/10679/8263
dc.identifier.urihttps://doi.org/10.1109/ITSC48978.2021.9565062
dc.identifier.wos000841862502038
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2021 IEEE International Intelligent Transportation Systems Conference (ITSC)
dc.relation.publicationcategoryInternational
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.titleEstimating roadway horizontal alignment using artificial neural networken_US
dc.typeConference paperen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublicationaf7d5a6d-1e33-48a1-94e9-8ec45f2d8c85
relation.isOrgUnitOfPublication.latestForDiscoveryaf7d5a6d-1e33-48a1-94e9-8ec45f2d8c85

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: