Publication:
Trustworthiness assessment in multimodal human-robot interaction based on cognitive load

dc.contributor.authorKırtay, M.
dc.contributor.authorÖztop, Erhan
dc.contributor.authorKuhlen, A. K.
dc.contributor.authorasa, M.
dc.contributor.authorHafner, V. V.
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorÖZTOP, Erhan
dc.date.accessioned2023-08-11T11:23:14Z
dc.date.available2023-08-11T11:23:14Z
dc.date.issued2022
dc.description.abstractIn this study, we extend our robot trust model into a multimodal setting in which the Nao robot leverages audio-visual data to perform a sequential multimodal pattern recalling task while interacting with a human partner who has different guiding strategies: reliable, unreliable, and random. Here, the humanoid robot is equipped with a multimodal auto-associative memory module to process audio-visual patterns to extract cognitive load (i.e., computational cost) and an internal reward module to perform cost-guided reinforcement learning. After interactive experiments, the robot associates a low cognitive load (i.e., high cumulative reward) yielded during the interaction with high trustworthiness of the guiding strategy of the partner. At the end of the experiment, we provide a free choice to the robot to select a trustworthy instructor. We show that the robot forms trust in a reliable partner. In the second setting of the same experiment, we endow the robot with an additional simple theory of mind module to assess the efficacy of the instructor in helping the robot perform the task. Our results show that the performance of the robot is improved when the robot bases its action decisions on factoring in the instructor assessment.en_US
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.identifier.doi10.1109/RO-MAN53752.2022.9900730en_US
dc.identifier.endpage476en_US
dc.identifier.isbn978-172818859-1
dc.identifier.scopus2-s2.0-85138710483
dc.identifier.startpage469en_US
dc.identifier.urihttp://hdl.handle.net/10679/8637
dc.identifier.urihttps://doi.org/10.1109/RO-MAN53752.2022.9900730
dc.identifier.wos000885903300068
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.titleTrustworthiness assessment in multimodal human-robot interaction based on cognitive loaden_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections