Publication:
Uncertainty-aware situational understanding

dc.contributor.authorTomsett, R.
dc.contributor.authorKaplan, L.
dc.contributor.authorCerutti, F.
dc.contributor.authorSullivan, P.
dc.contributor.authorVente, D.
dc.contributor.authorVilamala, M. R.
dc.contributor.authorKimmig, A.
dc.contributor.authorPreece, A.
dc.contributor.authorŞensoy, Murat
dc.contributor.departmentComputer Science
dc.contributor.editorPham, T.
dc.contributor.ozuauthorŞENSOY, Murat
dc.date.accessioned2020-08-26T12:43:59Z
dc.date.available2020-08-26T12:43:59Z
dc.date.issued2019
dc.description.abstractSituational understanding is impossible without causal reasoning and reasoning under and about uncertainty, i.e. prob-abilistic reasoning and reasoning about the confidence in the uncertainty assessment. We therefore consider the case of subjective (uncertain) Bayesian networks. In previous work we notice that when observations are out of the ordinary, confidence decreases because the relevant training data-effective instantiations-to determine the probabilities for unobserved variables-on the basis of the observed variables-is significantly smaller than the size of the training data-the total number of instantiations. It is therefore of primary importance for the ultimate goal of situational understanding to be able to efficiently determine the reasoning paths that lead to low confidence whenever and wherever it occurs: this can guide specific data collection exercises to reduce such an uncertainty. We propose three methods to this end, and we evaluate them on the basis of a case-study developed in collaboration with professional intelligence analysts.en_US
dc.description.sponsorshipUnited States Department of Defense US Army Research Laboratory (ARL) ; U.K. Ministry of Defence
dc.identifier.doi10.1117/12.2519945en_US
dc.identifier.isbn978-1-5106-2678-2
dc.identifier.issn0277-786Xen_US
dc.identifier.scopus2-s2.0-85072585959
dc.identifier.urihttp://hdl.handle.net/10679/6836
dc.identifier.urihttps://doi.org/10.1117/12.2519945
dc.identifier.volume11006en_US
dc.identifier.wos000502074700017
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherSPIEen_US
dc.relation.ispartofProceedings of SPIE Volume 11006, Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications
dc.relation.publicationcategoryInternational
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.keywordsUncertainty awareen_US
dc.subject.keywordsSituational understandingen_US
dc.titleUncertainty-aware situational understandingen_US
dc.typeConference paperen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections