Publication:
Multi-strategy Gaussian Harris hawks optimization for fatigue life of tapered roller bearings

dc.contributor.authorAbbasi, Ahmad
dc.contributor.authorFiroozi, Behnam
dc.contributor.authorŞendur, Polat
dc.contributor.authorHeidari, A. A.
dc.contributor.authorTiwari, R.
dc.contributor.departmentMechanical Engineering
dc.contributor.ozuauthorŞENDUR, Polat
dc.contributor.ozugradstudentAbbasi, Ahmad
dc.contributor.ozugradstudentFiroozi, Behnam
dc.date.accessioned2023-04-26T07:48:32Z
dc.date.available2023-04-26T07:48:32Z
dc.date.issued2022-12
dc.description.abstractBearing is one of the most fundamental components of rotary machinery, and its fatigue life is a crucial factor in designing. The design optimization of tapered roller bearing (TRB) is a complex design problem because various arrays of designing parameters and functional requirements should be fulfilled. Since there are many design variables and nonlinear constraints, presenting an optimal design of TRBs poses some challenges for metaheuristic algorithms. The Harris hawks optimization (HHO) algorithm is a robust nature-inspired method with unique exploitation and exploration phases due to its time-varying structure. However, this metaheuristic algorithm may still converge to local optima for more challenging problems such as the design of TRBs. Therefore, this study aims to improve the accuracy and efficiency of the shortcomings of this algorithm. The performance of the proposed algorithm is first evaluated for the TRB optimization problem. The TRB optimization design has nine design variables and 26 constraints because of geometrical dimensions and strength conditions. The productivity of the proposed method is compared with diverse metaheuristic algorithms in the literature. The results demonstrate the significant development of dynamic load capacity in comparison to the standard value. Furthermore, the enhanced version of the HHO algorithm presented in this study is benchmarked with various well-known engineering problems. For supplementary materials regarding algorithms in this research, readers can refer to https://aliasgharheidari.com.en_US
dc.description.sponsorshipOzyegin University
dc.identifier.doi10.1007/s00366-021-01442-3en_US
dc.identifier.endpage4413en_US
dc.identifier.issn0177-0667en_US
dc.identifier.issueSUPPL 5en_US
dc.identifier.startpage4387en_US
dc.identifier.urihttp://hdl.handle.net/10679/8147
dc.identifier.urihttps://doi.org/10.1007/s00366-021-01442-3
dc.identifier.volume38en_US
dc.identifier.wos000680788400001
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringeren_US
dc.relation.ispartofEngineering with Computers
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsConstrained optimizationen_US
dc.subject.keywordsFatigue lifeen_US
dc.subject.keywordsHarris hawks optimizationen_US
dc.subject.keywordsOptimizationen_US
dc.subject.keywordsSwarm-intelligence algorithmsen_US
dc.subject.keywordsTapered roller bearingen_US
dc.titleMulti-strategy Gaussian Harris hawks optimization for fatigue life of tapered roller bearingsen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublicationdaa77406-1417-4308-b110-2625bf3b3dd7
relation.isOrgUnitOfPublication.latestForDiscoverydaa77406-1417-4308-b110-2625bf3b3dd7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: