Publication: Characterization of silver Ions-doped organomodified nanoclays
Institution Authors
Authors
Journal Title
Journal ISSN
Volume Title
Type
article
Access
restrictedAccess
Publication Status
Published
Abstract
In this study, montmorillonite (MMT) and halloysite nanoclays were organomodified with cationic surfactants N-cetyl-N, N, N-trimethylammonium bromide (CTAB) and poly diallyl dimethylammonium chloride (PDAC) to enhance intercalation characteristics. The organomodified nanoclay samples were doped with Ag+ ions in order to enhance antimicrobial properties, and their XRD, ATR-FTIR, ICP-MS, SEM, TEM, zeta potential, mean particle size, and in vitro Ag+ release properties were further investigated. The antibacterial activity of the Ag-doped organoclays was analyzed by broth dilution method as well as the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against gram-positive (Staphylococcus aureus ATCC 25,923 and Listeria monocytogenes ATCC 13,932) and gram-negative (Escherichia coli O157:H7 ATCC 25,922 and Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14,028) bacterial strains. The surface load of the organomodified nanoclays changed to positive due to the cationic surfactants, and as a result of the XRD examinations, the interlayer space of the nanoclays increased. ATR-FTIR and ICP-MS analysis indicated that Ag+ ions successfully doped into the nanoclay structure. Also, MMT-type nanoclay samples released the Ag+ ions into the water medium more than halloysite-type nanoclay samples. Nanoclays organomodified by CTAB had an effective bactericidal effect on each bacterial strain than PDAC-modified nanoclays. Ag-doped nanoclays had MIC and MBC values varying from 0.6 to 5 mg/ml in the nutrient broth medium for all the bacterial strains. In conclusion, intercalated and Ag+-doped MMT and halloysite nanoclays were successfully prepared and effectively used for bacterial growth inhibition.
Date
2023-01
Publisher
Springer