Publication: Incremental analysis of large-scale system logs for anomaly detection
Institution Authors
Authors
Journal Title
Journal ISSN
Volume Title
Type
Conference paper
Access
info:eu-repo/semantics/restrictedAccess
Publication Status
Published
Abstract
Anomalies during system execution can be detected by automated analysis of logs generated by the system. However, large scale systems can generate tens of millions of lines of logs within days. Centralized implementations of traditional machine learning algorithms are not scalable for such data. Therefore, we recently introduced a distributed log analysis framework for anomaly detection. In this paper, we introduce an extension of this framework, which can detect anomalies earlier via incremental analysis instead of the existing offline analysis approach. In the extended version, we periodically process the log data that is accumulated so far. We conducted controlled experiments based on a benchmark dataset to evaluate the effectiveness of this approach. We repeated our experiments with various periods that determine the frequency of analysis as well as the size of the data processed each time. Results showed that our online analysis can improve anomaly detection time significantly while keeping the accuracy level same as that is obtained with the offline approach. The only exceptional case, where the accuracy is compromised, rarely occurs when the analysis is triggered before all the log data associated with a particular session of events are collected.
Date
2019
Publisher
IEEE