Publication: Learning in discrete-time average-cost mean-field games
dc.contributor.author | Anahtarcı, Berkay | |
dc.contributor.author | Karıksız, Can Deha | |
dc.contributor.author | Saldı, Naci | |
dc.contributor.department | Natural and Mathematical Sciences | |
dc.contributor.ozuauthor | ANAHTARCI, Berkay | |
dc.contributor.ozuauthor | KARIKSIZ, Can Deha | |
dc.contributor.ozuauthor | SALDI, Naci | |
dc.date.accessioned | 2022-08-08T13:02:14Z | |
dc.date.available | 2022-08-08T13:02:14Z | |
dc.date.issued | 2021 | |
dc.description.abstract | In this paper, we consider learning of discrete-time mean-field games under an average cost criterion. We propose a Q-iteration algorithm via Banach Fixed Point Theorem to compute the mean-field equilibrium when the model is known. We then extend this algorithm to the learning setting by using fitted Q-iteration and establish the probabilistic convergence of the proposed learning algorithm. Our work on learning in average-cost mean-field games appears to be the first in the literature. | en_US |
dc.identifier.doi | 10.1109/CDC45484.2021.9682954 | en_US |
dc.identifier.endpage | 3053 | en_US |
dc.identifier.issn | 0743-1546 | en_US |
dc.identifier.scopus | 2-s2.0-85126035903 | |
dc.identifier.startpage | 3048 | en_US |
dc.identifier.uri | http://hdl.handle.net/10679/7777 | |
dc.identifier.uri | https://doi.org/10.1109/CDC45484.2021.9682954 | |
dc.identifier.volume | 2021-December | en_US |
dc.identifier.wos | 000781990302115 | |
dc.language.iso | eng | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2021 60th IEEE Conference on Decision and Control (CDC) | |
dc.relation.publicationcategory | International | |
dc.rights | restrictedAccess | |
dc.title | Learning in discrete-time average-cost mean-field games | en_US |
dc.type | conferenceObject | en_US |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 7a8a2b87-4f48-440a-a491-3c0b2888cbca | |
relation.isOrgUnitOfPublication.latestForDiscovery | 7a8a2b87-4f48-440a-a491-3c0b2888cbca |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.45 KB
- Format:
- Item-specific license agreed upon to submission
- Description: