Publication:
Learning in discrete-time average-cost mean-field games

dc.contributor.authorAnahtarcı, Berkay
dc.contributor.authorKarıksız, Can Deha
dc.contributor.authorSaldı, Naci
dc.contributor.departmentNatural and Mathematical Sciences
dc.contributor.ozuauthorANAHTARCI, Berkay
dc.contributor.ozuauthorKARIKSIZ, Can Deha
dc.contributor.ozuauthorSALDI, Naci
dc.date.accessioned2022-08-08T13:02:14Z
dc.date.available2022-08-08T13:02:14Z
dc.date.issued2021
dc.description.abstractIn this paper, we consider learning of discrete-time mean-field games under an average cost criterion. We propose a Q-iteration algorithm via Banach Fixed Point Theorem to compute the mean-field equilibrium when the model is known. We then extend this algorithm to the learning setting by using fitted Q-iteration and establish the probabilistic convergence of the proposed learning algorithm. Our work on learning in average-cost mean-field games appears to be the first in the literature.en_US
dc.identifier.doi10.1109/CDC45484.2021.9682954en_US
dc.identifier.endpage3053en_US
dc.identifier.issn0743-1546en_US
dc.identifier.scopus2-s2.0-85126035903
dc.identifier.startpage3048en_US
dc.identifier.urihttp://hdl.handle.net/10679/7777
dc.identifier.urihttps://doi.org/10.1109/CDC45484.2021.9682954
dc.identifier.volume2021-Decemberen_US
dc.identifier.wos000781990302115
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2021 60th IEEE Conference on Decision and Control (CDC)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.titleLearning in discrete-time average-cost mean-field gamesen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication7a8a2b87-4f48-440a-a491-3c0b2888cbca
relation.isOrgUnitOfPublication.latestForDiscovery7a8a2b87-4f48-440a-a491-3c0b2888cbca

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: