Publication:
Fashion image retrieval with capsule networks

dc.contributor.authorKınlı, Osman Furkan
dc.contributor.authorÖzcan, Barış
dc.contributor.authorKıraç, Mustafa Furkan
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorKINLI, Osman Furkan
dc.contributor.ozuauthorKIRAÇ, Mustafa Furkan
dc.contributor.ozugradstudentÖzcan, Barış
dc.date.accessioned2020-09-11T08:40:24Z
dc.date.available2020-09-11T08:40:24Z
dc.date.issued2019
dc.description.abstractIn this study, we investigate in-shop clothing retrieval performance of densely-connected Capsule Networks with dynamic routing. To achieve this, we propose Triplet-based design of Capsule Network architecture with two different feature extraction methods. In our design, Stacked-convolutional (SC) and Residual-connected (RC) blocks are used to form the input of capsule layers. Experimental results show that both of our designs outperform all variants of the baseline study, namely FashionNet, without relying on the landmark information. Moreover, when compared to the SOTA architectures on clothing retrieval, our proposed Triplet Capsule Networks achieve comparable recall rates only with half of parameters used in the SOTA architectures.en_US
dc.identifier.doi10.1109/ICCVW.2019.00376en_US
dc.identifier.endpage3112en_US
dc.identifier.isbn978-1-7281-5023-9
dc.identifier.issn2473-9936en_US
dc.identifier.scopus2-s2.0-85081642041
dc.identifier.startpage3109en_US
dc.identifier.urihttp://hdl.handle.net/10679/6940
dc.identifier.urihttps://doi.org/10.1109/ICCVW.2019.00376
dc.identifier.wos000554591603026
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.titleFashion image retrieval with capsule networksen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections