Publication: Fashion image retrieval with capsule networks
Institution Authors
Journal Title
Journal ISSN
Volume Title
Type
Conference paper
Access
info:eu-repo/semantics/restrictedAccess
Publication Status
Published
Abstract
In this study, we investigate in-shop clothing retrieval performance of densely-connected Capsule Networks with dynamic routing. To achieve this, we propose Triplet-based design of Capsule Network architecture with two different feature extraction methods. In our design, Stacked-convolutional (SC) and Residual-connected (RC) blocks are used to form the input of capsule layers. Experimental results show that both of our designs outperform all variants of the baseline study, namely FashionNet, without relying on the landmark information. Moreover, when compared to the SOTA architectures on clothing retrieval, our proposed Triplet Capsule Networks achieve comparable recall rates only with half of parameters used in the SOTA architectures.
Date
2019
Publisher
IEEE