Publication: An exact algorithm for the Steiner tree problem with delays
dc.contributor.author | Leggieri, V. | |
dc.contributor.author | Haouari, Mohamed | |
dc.contributor.author | Triki, C. | |
dc.contributor.department | Industrial Engineering | |
dc.contributor.ozuauthor | HAOUARI, Mohamed | |
dc.date.accessioned | 2012-05-30T12:09:48Z | |
dc.date.available | 2012-05-30T12:09:48Z | |
dc.date.issued | 2010-08-01 | |
dc.description.abstract | The Steiner Tree Problem with Delays (STPD) is a variant of the well-known Steiner Tree Problem in which the delay on each path between a source node and a terminal node is limited by a given maximum value. We propose a Branch-and-Cut algorithm for solving this problem using a formulation based on lifted Miller-Tucker-Zemlin subtour elimination constraints. The effectiveness of the proposed algorithm is assessed through computational experiments carried out on dense benchmark instances. | en_US |
dc.description.version | post-print | |
dc.identifier.doi | 10.1016/j.endm.2010.05.029 | |
dc.identifier.endpage | 230 | |
dc.identifier.issn | 1571-0653 | |
dc.identifier.scopus | 2-s2.0-77954936857 | |
dc.identifier.startpage | 223 | |
dc.identifier.uri | http://hdl.handle.net/10679/183 | |
dc.identifier.uri | https://doi.org/10.1016/j.endm.2010.05.029 | |
dc.identifier.volume | 36 | |
dc.language.iso | eng | en_US |
dc.peerreviewed | yes | en_US |
dc.publicationstatus | published | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Electronic Notes in Discrete Mathematics | |
dc.relation.publicationcategory | International | |
dc.rights | restrictedAccess | |
dc.subject.keywords | Steiner tree problem | en_US |
dc.subject.keywords | MTZ subtour elimination constraints | en_US |
dc.subject.keywords | Branch-and-cut | en_US |
dc.title | An exact algorithm for the Steiner tree problem with delays | en_US |
dc.type | conferenceObject | en_US |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b | |
relation.isOrgUnitOfPublication.latestForDiscovery | 5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b |