Publication:
The Camassa-Holm approximation to the double dispersion equation for arbitrarily long times

dc.contributor.authorErbay, Saadet
dc.contributor.authorErkip, A.
dc.contributor.authorKuruk, G.
dc.contributor.departmentNatural and Mathematical Sciences
dc.contributor.ozuauthorERBAY, Saadet
dc.date.accessioned2023-06-14T13:07:34Z
dc.date.available2023-06-14T13:07:34Z
dc.date.issued2022-09
dc.description.abstractIn the present paper we prove the validity of the Camassa-Holm equation as a long wave limit to the double dispersion equation which describes the propagation of bidirectional weakly nonlinear and dispersive waves in an infinite elastic medium. First we show formally that the right-going wave solutions of the double dispersion equation can be approximated by the solutions of the Camassa-Holm equation in the long wave limit. Then we rigorously prove that the solutions of the double dispersion and the Camassa-Holm equations remain close over a long time interval, determined by two small parameters measuring the effects of nonlinearity and dispersion.
dc.identifier.doi10.1007/s00605-022-01740-y
dc.identifier.endpage111
dc.identifier.issn0026-9255
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85133629308
dc.identifier.startpage97
dc.identifier.urihttp://hdl.handle.net/10679/8409
dc.identifier.urihttps://doi.org/10.1007/s00605-022-01740-y
dc.identifier.volume199
dc.identifier.wos000824921000001
dc.language.isoeng
dc.peerreviewedyes
dc.publicationstatusPublished
dc.publisherSpringer
dc.relation.ispartofMonatshefte fur Mathematik
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsAsymptotic expansion
dc.subject.keywordsCamassa-Holm equation
dc.subject.keywordsDouble dispersion equation
dc.subject.keywordsLong time existence
dc.subject.keywordsRigorous justification
dc.titleThe Camassa-Holm approximation to the double dispersion equation for arbitrarily long times
dc.typearticle
dspace.entity.typePublication
relation.isOrgUnitOfPublication7a8a2b87-4f48-440a-a491-3c0b2888cbca
relation.isOrgUnitOfPublication.latestForDiscovery7a8a2b87-4f48-440a-a491-3c0b2888cbca

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: