Publication:
Performance analysis of meta-learning based bayesian deep kernel transfer methods for regression tasks

dc.contributor.authorSavaşlı, Ahmet Çağatay
dc.contributor.authorTütüncü, Damla
dc.contributor.authorNdigande, Alain Patrick
dc.contributor.authorÖzer, Sedat
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorÖZER, Sedat
dc.contributor.ozugradstudentSavaşlı, Ahmet Çağatay
dc.contributor.ozugradstudentTütüncü, Damla
dc.contributor.ozugradstudentNdigande, Alain Patrick
dc.date.accessioned2023-11-06T10:45:04Z
dc.date.available2023-11-06T10:45:04Z
dc.date.issued2023
dc.description.abstractMeta-learning aims to apply existing models on new tasks where the goal is 'learning to learn' so that learning from a limited amount of labeled data or learning in a short amount of time is possible. Deep Kernel Transfer (DKT) is a recently proposed meta-learning approach based on Bayesian framework. DKT's performance depends on the used kernel functions and it has two implementations, namely DKT and GPNet. In this paper, we use a large set of kernel functions on both DKT and GPNet implementations for two regression tasks to study their performances and train them under different optimizers. Furthermore, we compare the training time of both implementations to clarify the ambiguity in terms of which algorithm runs faster for the regression based tasks.en_US
dc.identifier.doi10.1109/SIU59756.2023.10224015en_US
dc.identifier.scopus2-s2.0-85173554810
dc.identifier.urihttp://hdl.handle.net/10679/8933
dc.identifier.urihttps://doi.org/10.1109/SIU59756.2023.10224015
dc.identifier.wos001062571000225
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2023 31st Signal Processing and Communications Applications Conference (SIU)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsDeep kernel transferen_US
dc.subject.keywordsFew-shot learningen_US
dc.subject.keywordsKernel learningen_US
dc.subject.keywordsMeta-learningen_US
dc.subject.keywordsRegressionen_US
dc.titlePerformance analysis of meta-learning based bayesian deep kernel transfer methods for regression tasksen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections