Publication:
Performance analysis of meta-learning based bayesian deep kernel transfer methods for regression tasks

Placeholder

Institution Authors

Research Projects

Organizational Unit

Journal Title

Journal ISSN

Volume Title

Type

conferenceObject

Access

restrictedAccess

Publication Status

Published

Journal Issue

Abstract

Meta-learning aims to apply existing models on new tasks where the goal is 'learning to learn' so that learning from a limited amount of labeled data or learning in a short amount of time is possible. Deep Kernel Transfer (DKT) is a recently proposed meta-learning approach based on Bayesian framework. DKT's performance depends on the used kernel functions and it has two implementations, namely DKT and GPNet. In this paper, we use a large set of kernel functions on both DKT and GPNet implementations for two regression tasks to study their performances and train them under different optimizers. Furthermore, we compare the training time of both implementations to clarify the ambiguity in terms of which algorithm runs faster for the regression based tasks.

Date

2023

Publisher

IEEE

Description

Keywords

Citation

Collections


Page Views

0

File Download

0