Publication:
Inferring cost functions using reward parameter search and policy gradient reinforcement learning

dc.contributor.authorArditi, Emir
dc.contributor.authorKunavar, T.
dc.contributor.authorUgur, E.
dc.contributor.authorBabic, J.
dc.contributor.authorÖztop, Erhan
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorÖZTOP, Erhan
dc.date.accessioned2023-04-26T12:08:07Z
dc.date.available2023-04-26T12:08:07Z
dc.date.issued2021
dc.description.abstractThis study focuses on inferring cost functions of obtained movement data using reward parameter search and policy gradient based Reinforcement Learning (RL). The behavior data for this task is obtained through a series of squat-to-stand movements of human participants under dynamic perturbations. The key parameter searched in the cost function is the weight of total torque used in performing the squat-to-stand action. An approximate model is used to learn squat-to-stand movements via a policy gradient method, namely Proximal Policy Optimization(PPO). A behavioral similarity metric based on Center of Mass(COM) is used to find the most likely weight parameter. The stochasticity in the training result of PPO is dealt with multiple runs, and as a result, a reasonable and a stable Inverse Reinforcement Learning(IRL) algorithm is obtained in terms of performance. The results indicate that for some participants, the reward function parameters of the experts were inferred successfully.en_US
dc.description.sponsorshipSlovenia/ARRS -Turkey/TUBITAK bilateral collaboration ; Bogazici Resarch Fund (BAP) IMAGINE-COG++ Project
dc.identifier.doi10.1109/IECON48115.2021.9589967en_US
dc.identifier.isbn978-1-6654-3554-3
dc.identifier.issn1553-572Xen_US
dc.identifier.urihttp://hdl.handle.net/10679/8149
dc.identifier.urihttps://doi.org/10.1109/IECON48115.2021.9589967
dc.identifier.wos000767230605036
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/215E271
dc.relation.ispartofIECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.titleInferring cost functions using reward parameter search and policy gradient reinforcement learningen_US
dc.typeconferenceObjecten_US
dc.type.subtypeConference paper
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections