Publication:
Unidirectional wave motion in a nonlocally and nonlinearly elastic medium: The KdV, BBM and CH equations

dc.contributor.authorErbay, Hüsnü Ata
dc.contributor.authorErbay, Saadet
dc.contributor.authorErkip, A.
dc.contributor.departmentNatural and Mathematical Sciences
dc.contributor.ozuauthorERBAY, Hüsnü Ata
dc.contributor.ozuauthorERBAY, Saadet
dc.date.accessioned2015-10-26T14:07:43Z
dc.date.available2015-10-26T14:07:43Z
dc.date.issued2015
dc.description.abstractWe consider unidirectional wave propagation in a nonlocally and nonlinearly elastic medium whose constitutive equation is given by a convolution integral with a suitable kernel function. We first give a brief review of asymptotic wave models describing the unidirectional propagation of small-but-finite amplitude long waves. When the kernel function is the well-known exponential kernel, the asymptotic description is provided by the Korteweg–de Vries (KdV) equation, the Benjamin–Bona–Mahony (BBM) equation, or the Camassa–Holm (CH) equation. When the Fourier transform of the kernel function has fractional powers, it turns out that fractional forms of these equations describe unidirectional propagation of the waves. We then compare the exact solutions of the KdV equation and the BBM equation with the numerical solutions of the nonlocal model. We observe that the solution of the nonlocal model is well approximated by associated solutions of the KdV equation and the BBM equation over the time interval considered.en_US
dc.description.versionpublisher version
dc.identifier.doi10.3176/proc.2015.3.08
dc.identifier.endpage262
dc.identifier.issue3
dc.identifier.scopus2-s2.0-84947804639
dc.identifier.startpage256
dc.identifier.urihttp://hdl.handle.net/10679/976
dc.identifier.urihttps://doi.org/10.3176/proc.2015.3.08
dc.identifier.volume64
dc.identifier.wos000360140700009
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatuspublisheden_US
dc.publisherEstonian Academy of Sciencesen_US
dc.relation.ispartofProceedings of the Estonian Academy of Sciences
dc.relation.publicationcategoryInternational
dc.rightsopenAccess
dc.subject.keywordsnonlocal elasticityen_US
dc.subject.keywordsKorteweg–de Vries equationen_US
dc.subject.keywordsBenjamin–Bona–Mahony equationen_US
dc.subject.keywordsCamassa–Holm equationen_US
dc.subject.keywordsfractional Camassa–Holm equationen_US
dc.titleUnidirectional wave motion in a nonlocally and nonlinearly elastic medium: The KdV, BBM and CH equationsen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication7a8a2b87-4f48-440a-a491-3c0b2888cbca
relation.isOrgUnitOfPublication.latestForDiscovery7a8a2b87-4f48-440a-a491-3c0b2888cbca

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Unidirectional wave motion in a nonlocally and nonlinearly elastic medium The KdV, BBM and CH equations.pdf
Size:
537.15 KB
Format:
Adobe Portable Document Format
Description:
Unidirectional wave motion in a nonlocally and nonlinearly elastic medium: The KdV, BBM and CH equations

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: