Publication:
Hydrogenated carbon monolayer in biphenylene network offers a potential paradigm for nanoelectronic devices

dc.contributor.authorDemirci, S.
dc.contributor.authorGorkan, T.
dc.contributor.authorÇallloǧlu, Ş.
dc.contributor.authorÖzçelik, Veli Ongun
dc.contributor.authorBarth, J. V.
dc.contributor.authorAktürk, E.
dc.contributor.authorCiraci, S.
dc.contributor.departmentNatural and Mathematical Sciences
dc.contributor.ozuauthorÖZÇELİK, Veli Ongun
dc.date.accessioned2023-06-14T08:27:42Z
dc.date.available2023-06-14T08:27:42Z
dc.date.issued2022-09-15
dc.description.abstractA metallic carbon monolayer in the biphenylene network (specified as C ohs) becomes an insulator upon hydrogenation (specified as CH ohs). Patterned dehydrogenation of this CH ohs can offer a variety of intriguing functionalities. Composite structures constituted by alternating stripes of C and CH ohs with different repeat periodicity and chirality display topological properties and can form heterostructures with a tunable band-lineup or Schottky barrier height. Alternating arrangements of these stripes of finite size enable one to also construct double barrier resonant tunneling structures and 2D, lateral nanocapacitors with high gravimetric capacitance for an efficient energy storage device. By controlled removal of H atom from a specific site or dehydrogenation of an extended zone, one can achieve antidoping or construct 0D quantum structures like antidots, antirings/loops, and supercrystals, the energy level spacing of which can be controlled with their geometry and size for optoelectronic applications. Conversely, all these device functions can be acquired also by controlled hydrogenation of a bare C ohs monolayer. Since all these processes are applied to a monolayer, the commensurability of electronically different materials is assured. These features pertain not only to CH ohs but also to fully hydrogenated Si ohs.en_US
dc.description.sponsorshipAcademy of Science of Turkey ; High Performance and Grid Computing Center ; National Center for High-Performance Computing of Turkey ; TUBITAK ULAKBIM ; Alexander von Humboldt-Stiftung , Ulusal Yüksek Başarımlı Hesaplama Merkezi, Istanbul Teknik Üniversitesi ; Kırıkkale Üniversitesi ; Bilim Akademisi ; TÜBİTAK ; Leibniz-Rechenzentrum
dc.identifier.doi10.1021/acs.jpcc.2c04453en_US
dc.identifier.endpage15500en_US
dc.identifier.issn1932-7447en_US
dc.identifier.issue36en_US
dc.identifier.scopus2-s2.0-85137918599
dc.identifier.startpage15491en_US
dc.identifier.urihttp://hdl.handle.net/10679/8400
dc.identifier.urihttps://doi.org/10.1021/acs.jpcc.2c04453
dc.identifier.volume126en_US
dc.identifier.wos000850672100001
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofJournal of Physical Chemistry C
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.titleHydrogenated carbon monolayer in biphenylene network offers a potential paradigm for nanoelectronic devicesen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication7a8a2b87-4f48-440a-a491-3c0b2888cbca
relation.isOrgUnitOfPublication.latestForDiscovery7a8a2b87-4f48-440a-a491-3c0b2888cbca

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: