Publication:
Quaternion capsule networks

dc.contributor.authorÖzcan, Barış
dc.contributor.authorKınlı, Osman Furkan
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorKINLI, Osman Furkan
dc.contributor.ozugradstudentÖzcan, Barış
dc.date.accessioned2022-08-10T12:37:27Z
dc.date.available2022-08-10T12:37:27Z
dc.date.issued2021
dc.description.abstractCapsules are grouping of neurons that allow to represent sophisticated information of a visual entity such as pose and features. In the view of this property, Capsule Networks outperform CNNs in challenging tasks like object recognition in unseen viewpoints, and this is achieved by learning the transformations between the object and its parts with the help of high dimensional representation of pose information. In this paper, we present Quaternion Capsules (QCN) where pose information of capsules and their transformations are represented by quaternions. Quaternions arc immune to the gimbal lock, have straightforward regularization of the rotation representation for capsules, and require less number of parameters than matrices. The experimental results show that QCNs generalize better to novel viewpoints with fewer parameters, and also achieve onpar or better performances with the state-of-the-art Capsule architectures on well-known benchmarking datasets. Our code is available(1).en_US
dc.identifier.doi10.1109/ICPR48806.2021.9412006
dc.identifier.endpage6865en_US
dc.identifier.isbn978-1-7281-8808-9
dc.identifier.issn1051-4651en_US
dc.identifier.scopus2-s2.0-85110423980
dc.identifier.startpage6858en_US
dc.identifier.urihttp://hdl.handle.net/10679/7789
dc.identifier.urihttps://doi.org/10.1109/ICPR48806.2021.9412006
dc.identifier.wos000678409207001
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.ispartof2020 25th International Conference on Pattern Recognition (ICPR)
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.titleQuaternion capsule networksen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections